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Abstract
Background: Modeling of wastewater treatment plants is necessary to predict their later works. In 
this research, three methods were compared to predict some parameters at the outlet of wastewater 
treatment plant in Hama city in Syria. 
Methods: In this paper, three methods (linear regression, power regression, and regression trees) to 
model wastewater treatment plant in Hama city were compared to predict the parameters at the outlet 
of the plant (cBOD5out, CODout, TSSout) in terms of the parameters at the inlet of the plant (Qin, cBOD5in, 
CODin, TSSin).
Results: When predicting cBOD5out, the values of RMSE of the test data set were 4.4105, 4.3875, and 
3.8418; when predicting CODout, the values of RMSE of the test data set were 6.9325, 6.8003, and 
5.3232; and when predicting TSSout, the values of root mean squared error (RMSE) of the test data set 
were 3.7781, 3.6936, and 3.2391 using linear regression, power regression, and regression trees (RTs), 
respectively.
Conclusion: According to the results, the RTs outperforms in predicting cBOD5out, CODout, and TSSout 
because this method achieved the least RMSE of the test data set.
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Introduction
Wastewater treatment is an important measure that should 
be taken seriously for the betterment of our society and 
future (1). The use of treated wastewater in the irrigation 
of agricultural lands is necessary due to the lack of water 
and the change of climate (2). Wastewater treatment is 
a set of processes that improve the quality of wastewater 
and reduce its harmful impact on humans (3). Pollutants 
are removed from wastewater through treatment (4). 
Modeling of wastewater treatment plant is a challenging 
work due to the complexity of treatment processes 
(5). Effluent treatment plant modeling is fundamental 
to estimate process and work of the plant. Some of the 
important treatment variables cannot be measured online. 
For example, biological oxygen demand (BOD5) needs an 
incubation of 5 days, so this is hard to be obtained (1). 
Lately, computer modeling techniques have been applied 
in several ecological topics (6) due to the significance 
of sewage water process and its act in decreasing the 
ecological pollution (7). Various approaches have been 
used to model and control the operation of wastewater 

treatment plants, such as expert systems (8), knowledge-
based systems, neural networks (9), mixed approaches 
(10), and machine learning methods (11,12). There are 
some main variables such as chemical oxygen demand 
(COD), BOD, and total suspended solids (TSS) used to 
evaluate the performance of a sewage water treatment 
plant (13,14).

Predicting BOD5 and COD rather than measuring 
them may be an environmentally and economically safe 
method due to the time required to measure them and 
the required measurement procedures that involve the 
use of many dangerous chemicals (15). Many researchers 
have applied multilinear regression (MLR), power 
regression, and regression trees (RTs) models to predict 
various water quality parameters. Abba et al predicted 
the effluent COD of Nicosia wastewater treatment plant 
using MLR, and they got the value of root mean squared 
error (RMSE) equal to 0.0121, the predictor parameters 
were BOD, COD, pH, conductivity, total phosphates (T-
P), total nitrogen (T-N), suspended solid (SS) and TSS 
(16). Ewaid et al predicted the water quality index of the 
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Tigris River in Baghdad using power regression, and they 
concluded that this method can be used to predict with 
acceptable accuracy (17). Baki et al created models with 
linear regression and power regression to estimate BOD 
at the entrance of the sewage treatment plant in Antalya. 
The input discharge (Q) was one of the input parameters 
of the model, and the RMSE values were 54.0593 and 
52.1535 for linear and power regression, respectively, so 
the power model outperformed (18). Granata et al used 
RT to predict BOD5, COD, and TSS, and it has achieved 
durability, accuracy, as well as great generalizability. 
The RMSE values for predicting BOD, COD, and TSS 
were 103, 2395, and 3486, respectively. The predictor 
parameters were residential area percentage, commercial 
area percentage, drainage area, industrial area percentage, 
institutional area percentage, freeway percentage, open 
space area percentage, impervious area percentage, runoff 
and precipitation depth (9). Faraji-Khiavi et al used the 
binary logistic regression in order to determine the effect 
of demographic, economic, social, and disease status on the 
use of health services during the COVID‐19 pandemic by 
the elderly in Iran, through a study conducted in 21 public 
health centers in Sirjan, southern Iran, and the results 
showed demographic, social, and economic disparities in 
the use of health services among the elderly (19).

In this paper, three methods, linear regression, power 
regression, and RTs, were used to model the wastewater 
treatment plant in Hama city, Syria. Then, the methods 
were compared and the one that achieves the least RMSE 
for the test data set was selected.

Materials and Methods
Hama wastewater treatment plant
The wastewater treatment plant in Hama city is located 
next to the village of Arza Al-Sharqiya, in the northern 
part of Hama city, 7 km from the city center, and it is 
situated on the banks of Orontes River where treated 
water is disposed of in the Orontes River, and it is on a 
total area of 80 000 m2. The plant was put into service on 
June 3, 2005, and the amount of wastewater it receives is 
approximately 50 000 m3/day from the living wastewater 
of Hama city. Its design life ends when its load values and 
incoming flow are higher than the loads it was designed to 
receive. Monthly data were collected for the parameters, 
flow (Q), carbonaceous biochemical oxygen demand 
(cBOD5), COD, and TSS, at the entrance and the exit of 
the plant for the years from 2014 to the first month of 
2020 measured by (m3/day) for the flow and by (mg/L) for 
the remaining parameters from the wastewater treatment 
plant in Hama city. 

Multi linear regression 
Regression is an approach used to find the relationship 
between a dependent variable and a set of independent 
variables. It is used in many fields, including engineering, 

finance, business, medical, and others. There are several 
regression techniques that have been presented in the 
literature and it is used for research objectives (20).

Multi linear regression is based on the idea of a linear 
relation between the independent variable and the 
dependent variable (21). It uses the least squares method. 
Equation (1) shows the relationship of multi linear 
regression.

0 1 1 2i m mY b b x b x b x= + + +…+     (1)

where x1, x2, ..., xm are the predictors, 𝑏0 is the constant 
of the regression, and (b1, b2, ..., bm) are the predictors 
coefficients of (x1, x2, ..., xm) (22).

Similar to simple regression, the regression coefficients 
(b0, b1, b2, ..., bm) are calculated by reducing the sum of 
the differences (eyi) between the actual values and the 
estimated values through the model as shown in Eq. (2) 
(23).
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Several authors used MLR to obtain a statistical model 
(24-26). Figure 1 shows a linear regression curve.

Regression methods have been widely used in predicting 
influent and effluent wastewater variables (27), and many 
researchers have used them extensively to assess quality 
parameters in civil flow, tanks, superficial water, as well as 
the plants of sewage treatment (28-33).

The regression equation is simple, and it takes much 
less time than other machine learning algorithms, but 
the majority of the real-world issues behave non-linearly 
behavior, so the linear regression does not fit neatly into 
their data, as a linear relationship is assumed between the 
input and output variables (20).

Power regression
It is a form of regression, in which the dependent variable 
is related to the independent variable raised to a power. 
The form of the power regression is as Eq. (3).

y = axb       (3)

Where x is the predictor variable and b is a constant. 
Power regression will not allow an independent variable 
of 0.

Figure 2 shows the shape of the power regression of 
y = x2 (20).

The function of multi power regression is expressed as 
shown in Eq. (4).

1 2
0 1 2* * * * mbb b

my b x x x= …      (4)

Since y represents the dependent variable, while (x1, x2, 
..., xm) represent the independent variables, and (b0, b1, ..., 
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bm) represent the regression coefficients (18).
The majority of real-world issues are linear over a very 

short period. As power regression is very close to the real 
issues. In addition, power regression techniques are used to 
get superior results with minimal error, but it becomes more 
difficult to understand and appliance than other regression 
models because the power of the variable increases the 
difficulty of the power regression technique (20).

Application of power regression
The applications of power regression are several, such as 
weather forecasting, ecological review, and physiotherapy 
(20).

Regression trees 
RTs are a form of decision trees (34) that are widely used 
classic machine learning algorithm due to its intuitive 
and obvious model (35), and they are considered as 
continuous class decision trees (9).

RTs are hierarchical structures made up of nodes, 
branches, and leaves that represent the division of a field 
into a number of fields that can be very close to the target 
and with sufficient precision (36). Figure 3 shows the 
structure of a typical RT.

Tree leaves are numbers that represent the mean cases 
that reach the leaf. The tree is more complicated and 
bigger than the regression model (37).

The process of constructing RTs consists of a repeated 

process that divides the data into branches or sections. In 
the beginning, all the data in the training set are collected 
in a single partition. After that, the algorithm starts by 
dividing the data into the first two branches using each 
possible binary division of each domain. At each stage, 
the algorithm chooses the division that reduces the sum 
of squared differences from the average of the two isolated 
divisions (9).

The process is repeated until the number of records 
that reaching each node is as previously defined by the 
researcher, and thus, it becomes a leaf (9). In contrast to 
regression, RT has a great ability to capture complicated 
and high-level interactions between input variables (38).

The RT method was used for transfer debris (39,40), 
deluge estimation (41), average annual deluge estimation 
(42), depth cleaning estimation (43,44), and prediction of 
the amount of sediment in rivers (45).

Models’ performance evaluation criteria
The evaluation criteria used in this research is the RMSE, 
and it is calculated using Eq. (5).

( )n 2
i ii 1

K
RMSE

n
V

=
−

= ∑      (5)

Where Ki is the real value, Vi is the estimated value, and 
n is the number of records (33,46).

Results
Data splitting
The data have been divided into the training data set 
that is used in the creation of the model, and it has the 
largest percentage (65%), and the test data set that is not 
used to create the model, but the model’s performance is 
evaluated by RMSE value when the test dataset is applied 
to the model, and it has the ratio of 35%. In this study, 
computer with Intel Core I3 1.2 GHz, 4 GB RAM, and 
MATLAB (Matrix Laboratory) software (R2016a) was 
used to get the results.

The first method (MLR)
A MLR model that relates cBOD5out in terms of Qin, 

Figure 1. Linear regression curve. Adapted from Iqbal (20 )

Figure 2. The shape of the power regression of the equation y = x2. 
Adapted from Iqbal (20)



Bodaka et al

Environmental Health Engineering and Management Journal 2023, 10(3), 293–300296

cBOD5in, CODin, and TSSin was found, and the result was 
as Eq. (5).

out in 5in

in in

cBOD5 9.7227 0.000048227Q 0.012666cBOD
0.010203COD   0.0071636 TSS

= − − +
+       (5) 

MLR model that relates CODout in terms of Qin, cBOD5in, 
CODin, and TSSin was found, and the result was as Eq. (6).

out in 5in

in in

COD 38.892 0.000033158 Q 0.048097cBOD

 0.032239COD 0.044383 TSS

= − − +

+       (6)

MLR model that relates TSSout in terms of Qin, cBOD5in, 
CODin, and TSSin was found, and the result was as Eq. (7).

out in 5in

in in

TSS 0.99199 0.000045951 Q 0.018757 cBOD  

0.021291COD 0.026576 TSS

= − − − +

+
       (7)

The RMSE values of the train and test data set were also 
calculated, and the results were as shown in Table 1.

According to Table 1, the RMSE value when predicting 

CODout for the testing data set, was 6.9325, which is higher 
than the RMSE value (0.0121) achieved in another study 
(16). This discrepancy is because of the differences in the 
predictor parameters between the two research, since the 
predictor parameters in the study by Abba and Elkiran 
were BOD, COD, pH, conductivity, T-P, T-N, SS and 
TSS (16), while the predictor parameters in the present 
research were Qin, cBOD5in, CODin, and TSSin.

The second method (power regression)
Power regression model that relates cBOD5out in terms of 
Qin, cBOD5in, CODin, and TSSin, was found, and the result 
was as Eq. (8).

( ) ( )
( ) ( )

 0.1828  0.25868
5

0.5471 0.10978 

5  5.8498* * *

*
out in in

in in

cBOD Q cBOD

COD TSS

− −=

                     (8)

Power regression model that relates CODout in terms of 
Qin, cBOD5in, CODin, and TSSin was found, and the result 
was as Eq. (9).

Figure 3. The structure of a typical regression tree. Adapted from Granata et al (9)
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( ) ( )
( ) ( )

 0.041335   0.30643
5

0.36039  0.26771 

 1 0.7930* * *

*
out in in

in in

COD Q cBOD

COD TSS

− −=

       (9)

Power model that relates TSSout in terms of Qin, cBOD5in, 
CODin, and TSSin, was found, and the result was as Eq. 
(10).

( ) ( )
( ) ( )

0.099645   0.47954  
out in 5in

0.90184    0.77636 
in in

TSS   0.0194* Q * cBOD *

COD * TSS

− −=

                   (10) 

The RMSE values of the train and test data set were also 
calculated, and the results are shown in Table 2.

The third method (RTs)
The RTs were adjusted by specifying a minimum number 
of observations in each terminal leaf that called in 
MATLAB software by ‘MinLeafSize’ ranging from 1 to 20, 
the values of RMSE were calculated for the train and test 
data set, and the results are shown in Table 3.

According to Table 3, the RMSE values when predicting 
cBOD5out, CODout, and TSSout for the testing data set using 
RTs were 3.8418, 5.3232, and 3.2391, which are lower 
than the RMSE values (103, 2395, and 3486) achieved 
in another study (9). This discrepancy is because of 
the differences in the predictor parameters that were 
residential area percentage, commercial area percentage, 
drainage area, industrial area percentage, institutional 
area percentage, freeway percentage, open space area 
percentage, impervious area percentage, runoff and 
precipitation depth in the study of Granata et al (9), while 
the predictor parameters in the present research were Qin, 
cBOD5in, CODin, and TSSin.

By comparing the tree methods used to model the plant 
in this research, in terms of RMSE for the test data, the 
results are summarized in Table 4. 

According to Table 4 and Figure 4, the results in the 
three methods used in this research were convergent.

Discussion
As shown in Table 4, power regression models outperform 
linear regression models when predicting all parameters, 
and the reason for this is the power regression models are 
much close to the real reality representation as stated in 
the references (18,20).

According to Table 3, RTs were experimented with a 
number of records in the terminal leaf ranging from 1 to 
20, and then, RMSE values were calculated for the train 
and test data set at each number of records in the terminal 
leaf. The number of records in the terminal leaf which 
achieved the least RMSE value for the test data set was 
selected. They were 7, 13, 9 achieved RMSE values for 
the test data set equal to 3.8418, 5.3232, and 3.2391 when 
predicting cBOD5out, CODout, and TSSout, respectively. It 
was revealed that the performance of the RTs model was 
reliable and has high generalizability, which is consistent 
with the results of the present study (9).

Also, as shown in Table 4, the RTs method is superior 
in parameters prediction that are cBOD5out, CODout, and 
TSSout because it achieved the least RMSE values for 
the test data set, which were 3.84, 5.32, and 3.24, when 
predicting cBOD5out, CODout, and TSSout, respectively, 
which is consistent with the results of the study of 
Suchetana et al (38). They reported that the RTs have a 
different capability to capture complicated interactions 
between input variables more than regression.

In the present research, RMSE values of 3.8418, 5.3232, 
and 3.2391 achieved when predicting BOD5, COD, and 
TSS using RT, which are less than the RMSE values (103, 
2395, and 3486) achieved in the study of Granata et al 
(9). This discrepancy is due to the differences between 
the predictor parameters (residential area percentage, 
commercial area percentage, drainage area, industrial 
area percentage, institutional area percentage, freeway 
percentage, open space area percentage, impervious area 
percentage, runoff and precipitation depth) used in the 
study by Granata et al (9), and the predictor parameters 
(Qin, cBOD5in, CODin, and TSSin) used in the present 

Table 1. RMSE values for predicting cBOD5out, CODout, and TSSout by MLR 
method

The parameter to be 
predicted

RMSE training data 
set

RMSE testing data 
set

cBOD5out 2.2166 4.4105

CODout 3.5929 6.9325

TSSout 2.3567 3.7781

Table 2. RMSE values when predicting cBOD5out, CODout, and TSSout using 
power regression method

The parameter to be 
predicted

RMSE training data 
set

RMSE testing data 
set

cBOD5out 2.2558 4.3875

CODout 3.5861 6.8003

TSSout 2.3683 3.6936

Table 3. RMSE values for predicting cBOD5out, CODout, and TSSout by RT 
method

The parameter 
to be predicted Min leaf size RMSE training 

data set
RMSE testing 

data set

cBOD5out 7 1.7841 3.8418

CODout 13 4.05376 5.3232

TSSout 9 2.2075 3.2391

Table 4. The RMSE values of the test data when predicting cBOD5out, 
CODout, and TSSout using the three methods MLR, power regression, and 
RT

Modeling method cBOD5out CODout TSSout

Linear regression 4.4105 6.9325 3.7781

Power regression 4.3875 6.8003 3.6936

RT 3.8418 5.3232 3.2391
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research. 
The RMSE achieved in the study by Abba and Elkiran 

(16) when predicting CODout using MLR was 0.0121, 
which is less than the RMSE value achieved in the 
present research (6.9325). This discrepancy is due to 
the differences between the predictor parameters (BOD, 
COD, pH, conductivity, T-P, T-N, SS, TSS) used in 
the study by Abba and Elkiran (16), and the predictor 
parameters (Qin, cBOD5in, CODin, and TSSin) used in the 
present research.

Conclusion
In this paper, MLR, power regression, and RTs were used 
to predict cBOD5out, CODout, and TSSout at the outlet of 
the wastewater treatment plant in Hama city in terms 
of parameters Qin, cBOD5in, CODin, and TSSin at the inlet 
of the plant, and then, to compare the three methods to 
predict each parameter and select the method that achieves 
the least RMSE value for the test data set. The results 
showed the superiority of RTs method over the MLR and 
power regression methods. The best method to predict 
cBOD5out, CODout, and TSSout is RT because it achieved 
the least RMSE value for the test data set, and this can 
be explained by the ability of the RTs method to provide 
good generalization in handling nonlinear relationships 
between the parameters to be predicted and the predictive 
parameters, and the parameters of wastewater treatment 
plants during the treatment make complex and nonlinear 
action. 
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