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Introduction
Leachate is a very thick, resistant, and toxic liquid that 
is produced from the physical, chemical, and biological 
changes of solid waste in landfills, incinerators, compost 
plants, and transfer stations (1-4). Leachate is produced 
from waste as a result of water percolating through the 
waste materials, extracting various contaminants and 
pollutants as it passes through (5,6). The sources and 
origin of leachate can include landfills, composting 
facilities, waste storage areas, and industrial sites (7). In 
landfills, rainwater and other liquids come into contact 
with decomposing waste, extracting dissolved and 

suspended materials, organic compounds, heavy metals, 
and other pollutants (2,8). Similarly, in composting 
facilities, water used in the composting process can 
leach out soluble organic compounds and nutrients, 
forming leachate (9,10). Leachate can also be produced 
in areas where waste is stored, such as waste piles or 
storage containers, as a result of rainfall or other forms 
of water infiltration (11). Industrial activities involving 
the storage or disposal of waste materials can also 
generate leachate containing various contaminants 
and pollutants, including chemicals, heavy metals, and 
organic compounds (5,12). It is important to note that 
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Abstract
Background: Modifying and enhancing treatment methods is essential to meet effluent standards 
for treating landfill leachate. This study investigated the treatment of municipal solid waste leachate 
(MSWL) using coagulation, flocculation, advanced oxidation, and extended aeration processes.
Methods: The effects of different coagulant doses and pH values on coagulation processes were 
compared. The treatment procedure was analyzed to determine the impact of varying concentrations of 
potassium persulfate (K2S2O8) and hydrogen peroxide (H2O2) on the results after coagulation with FeCl3. 
The extended aeration process’s biological stages were studied using a sludge retention time (SRT) of 23 
days and the effects of hydraulic retention time (HRT) of 18 and 36 hours. 
Results: The experimental results show that in the pH range of 5–8, the lower the pH value, the higher 
the treatment efficiency. The addition of 0.8 g L1− FeCl3 can achieve a 57% removal of chemical oxygen 
demand (COD). The addition of 2.5 g L1− K2S2O8 and 1.5 g L1− H2O2 with UV-C (15 W) for 70 minutes 
at pH 7 can effectively remove 86% of COD. Activated sludge extended aeration can attain an 88% 
removal of COD under optimal operating conditions (HRT = 36 hours, SRT = 23 days, and aeration = 36 
hours). The studied hybrid process with the efficiency of 99%, 98%, 95%, 87%, and 83% removal of 
COD, biochemical oxygen demand (BOD), total suspended solids (TSS), turbidity, and total Kjeldahl 
nitrogen (TKN), respectively, is suitable for leachate treatment.
Conclusion: This study showed that flocculation-coagulation followed by the advanced oxidation 
process (AOP) and extended aeration can be an efficient and promising treatment method for MSWL.
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the composition and characteristics of leachate can vary 
widely depending on the type of waste, the age of the 
waste, and the environmental conditions (13). Proper 
management and treatment of leachate are essential to 
prevent environmental contamination and protect water 
resources (14). Due to the serious pollution caused by 
leachate to water resources and the environment, to treat 
leachate and reduce the risk of pollution caused by it, it 
is necessary to develop sustainable and efficient leachate 
treatment techniques to protect the environment and 
public health (15-17). Surveys show that the per capita 
production of waste per person in Iran is 0.7 to 1 kg per day 
(average of 0.75 kg/d), in which organic waste occupies a 
significant amount (18). The per capita waste production 
in Mazandaran province, located in the north of Iran, is 
estimated to be about 1 kg (19-21). In most coastal cities of 
Mazandaran, due to the disposal of municipal solid waste 
(MSW) in landfills that do not have a leachate collection 
and treatment system, leachate easily enters water sources 
near the disposal site (22,23). Considering the composition 
of leachate and the hazardous chemicals in leachate, 
choosing an efficient method for leachate treatment is 
still an enormous challenge. Recently, the combination 
of biological processes and physicochemical methods 
has become very efficient (24). Flocculation-coagulation 
is widely applied as a pretreatment of waste leachate due 
to its simplicity and cost-effectiveness (25,26). The strict 
and ever-increasing environmental requirements require 
us to use new and more advanced methods to fill the 
existing gaps to reach today’s environmental standards, 
and one of these methods is advanced chemical oxidation 
(27). In recent years, they have preferred the application 
of persulfate-based advanced oxidation methods due to 
its high reactivity and the creation of sulfate radicals. 
The sulfate radical provides an easy implementation of 
reactions with various catalysts (28,29). Sulfate-based 
advanced oxidation processes (AOPs) are more effective 
in the degradation of resistant organic and inorganic 
materials, such as compounds with unsaturated aromatic 
bonds (30). Persulfate (PS) ions are commonly present 
in the form of stable sodium (Na2S2O8) and potassium 
(K2S2O8) salts, with a high redox potential. These salts 
are widely utilized in the remediation of water and soil 
(31). To produce sulfate-free radical (SO4•−), persulfate is 
activated using chemical or thermal methods. According 
to the sulfate radical oxidation potential (E0 = 2.6 V), it 
has a high oxidation capacity (32). In the design of AOPs, 
one of the most important criteria is the stable production 
of free radicals (OH•). Hydroxyl radicals attack these 
compounds through the abstraction of hydrogen from 
organic compounds or through the addition of OH 
radicals to organic molecules (33). In contrast, SO4•− 

usually converts organic molecules into organic radicals 
through electron transfer (34).

The selection criteria for leachate treatment processes 

in a project typically include the effectiveness in removing 
specific pollutants, the associated costs, operational 
efficiency, and the available facilities and equipment 
at the leachate treatment site (35). The cost of the 
treatment is an important parameter to consider, and 
different treatment methods are ranked based on their 
performance in removing specific pollutants and their 
cost-effectiveness (35,36). The decision-making process 
for leachate treatment involves balancing technical, 
economic, and environmental aspects of sustainability 
(36). Various treatment techniques, including biological, 
physical/chemical, and hybrid methods are employed to 
treat landfill leachate, and pre-treatment is often required 
for heavily contaminated wastewater (37).

In leachate treatment, the coagulation and flocculation 
stages are crucial for removing suspended particles and 
soluble pollutants (38,39). The coagulation stage involves 
adding coagulating chemicals to the wastewater to form 
flocs that separate suspended solids from the solution. The 
flocculation stage agglomerates the formed flocs, causing 
the accumulation of solid particles. These processes are 
essential for leachate treatment due to their high efficiency 
in removing suspended particles and soluble pollutants 
(39,40). 

AOPs are used to treat wastewater containing 
refractory, toxic, or non-biodegradable materials (41-43). 
AOPs generate hydroxyl radicals (OH•) or sulfate radicals 
(SO4

•–) in sufficient quantities to remove traceable organic 
contaminants and certain inorganic pollutants, or to 
increase wastewater biodegradability as a pre-treatment 
before an ensuing biological process (44). Ultraviolet (UV) 
radiation can activate persulfate and hydrogen peroxide 
(H2O2), leading to the formation of sulfate and hydroxyl 
radicals (17,45). These radicals are powerful oxidants that 
can rapidly decompose organic compounds into smaller 
and less harmful molecules. This process is particularly 
effective in breaking down complex organic molecules 
that are resistant to conventional treatment methods (46). 
The synergistic effect of UV-PS/H2O2 in the treatment of 
wastewater leads to the degradation of organic pollutants, 
reduction of color, and elimination of odor. It also aids 
in the removal of pathogens and pharmaceutical residues, 
making it an efficient and versatile treatment option for 
wastewater (17). In general, the UV-PS/H2O2 process has 
shown great promise in leachate treatment by effectively 
reducing the concentration of various pollutants and 
improving the overall quality of the effluent (17,47).

The extended aeration-activated sludge (EAAS) process 
is a common method for leachate, wastewater, and effluent 
treatment (48). This process utilizes activated sludge, 
air, and microorganisms to remove organic matter and 
nitrogen from wastewater (49,50). In the EAAS process, 
wastewater is introduced into large tanks containing 
activated sludge microorganisms, to which air is supplied 
(51). This process relies on providing air and nutrients 
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to the microorganisms to create an optimal environment 
for their activity. The microorganisms decompose the 
organic matter present in the wastewater using oxygen 
from the air, converting pollutants into non-organic 
substances (48,50,51). This process is effective due to 
the prolonged contact time between wastewater and 
microorganisms (long-duration aeration), providing the 
possibility of complete purification. Additionally, this 
process produces activated sludge, which can be used as a 
food source for microorganisms in subsequent treatment 
processes. As a result, the EAAS process is highly regarded 
for its efficiency in pollutant removal, high-quality 
activated sludge production, and facilitation of complete 
wastewater treatment. It is a notable treatment process 
for both wastewater and leachate due to its effectiveness 
(17,48,52).

In the treatment of landfill leachate, AOPs have 
been used in combination with other methods, such 
as coagulation and membrane bioreactor integration, 
to achieve high removal efficiencies of pollutants like 
aluminum, chemical oxygen demand (COD), suspended 
solids, and total organic carbon. Hybrid physical/
chemical methods, including AOPs, have also been 
proposed to improve removal efficiency and decrease 
energy consumption (17,37,53).

Improving and optimizing treatment approaches is 
crucial for meeting effluent standards in the treatment 
of landfill leachate. Therefore, the primary aim of this 
study was to analyze the physicochemical properties of 
urban waste leachate and to design a laboratory-scale 
Batch-flow leachate treatment system (BFLTS) based 
on sulfate-hydroxyl radicals for municipal solid waste 
leachate (MSWL) treatment. This research investigated 
the application of coagulation, flocculation, advanced 
oxidation, and extended aeration processes in the 
treatment of MSWL.

Materials and Methods
Chemicals and samples
Aluminum sulfate (Al2(SO4)3), Ferrous sulfate 
heptahydrate (FeSO4·7H2O), ferric chloride (FeCl3), 
concentrated sulfuric acid (H2SO4), sodium hydroxide 
(NaOH), and Potassium hydrogen phthalate (KHP) were 
obtained from Merck (Germany). Potassium persulfate 
(K2S2O8), H2O2, ammonium chloride (NH4Cl), and 
sodium thiosulfate (Na2S2O3), were purchased from 
Sigma–Aldrich (USA). Reagents of technical grade and 
analytical grade were used. Preliminary tests showed that 
the prepared leachate decays rapidly. For precise control 
of the loading level, the effectiveness of the treatment 
system, and the progressive changes in the organic 
loads, synthetic leachate (SL) (a mixture of trace metals 
and nutrients in distilled water) was prepared for daily 
laboratory utilization. 

Actual leachate was collected from a municipal waste 

landfill of Qaem-Shahr city in northern Iran during the 
dry (summer) and wet (winter) seasons. The pH of the 
leachate samples was immediately determined at the 
sampling site with a portable pH meter. Samples from 
each of the leachate accumulation sites in these locations 
were collected and filled in high-density polyethylene 
containers (54), which were previously washed, dried, 
and prepared, and their lids were covered with clean 
aluminum foils, from the beginning of the experiments in 
the laboratory, it was kept in the dark and in a refrigerator 
at a temperature of 4 degrees Celsius. Before testing, the 
samples were removed from the refrigerator and placed at 
room temperature for about 2 hours for conditioning (55).

Analytical methods
The physicochemical characteristics of leachate were 
determined based on the standard methods for testing 
water and wastewater (56). The COD analysis was done 
using the closed reflux method and colorimetric method 
No. 5220D. DR 2800-HACH spectrophotometer was used 
for colorimetry and reading the absorption of the contents 
of the vials at a wavelength of 600 nm. Biochemical 
oxygen demand (BOD) concentration was determined 
using the method of Method No. 5210B. Total Kjeldahl 
nitrogen (TKN) was measured using Method 4500-
Norg C. Total suspended solids (TSS) were determined 
according to Method No. 2540B. The pH parameters were 
determined using a HI2211pH/ORP meter, turbidity in a 
HACH-2100P, and conductivity with AQUALYTIC-Sens 
Direct Con200. Coagulation studies were performed, on 
the leachate with jar test equipment (Jar Tester Phipps 
& Bird Stirrer Model-7790-402). Leachate was analyzed 
for metal content using inductively coupled plasma mass 
spectrometry (ICP-MS, 7500 Agilent).

Design of the BFLTS
Leachate treatment studies in the stages of coagulation-
flocculation, sand filtration, AOPs, and extended 
aeration were performed. Once the optimal experimental 
conditions were determined for each process, all 
subsequent steps were conducted using landfill leachate 
under these optimal conditions. The experiments were 
performed in batch mode at a laboratory scale.

Leachate pretreatment was done, with a coagulation-
flocculation process performed in the Jar Test Apparatus 
equipped with 6 beakers of 2.5 L each. The sand filtration 
was made from a polyvinyl chloride (PVC) column 
(height: 60 cm; Ø 5.2 cm) equipped with an outlet valve. 
The column was filled with 700 g of sand from top to 
bottom: (i) a 30 cm layer of a mixture of filter sands (Ø 
0–3 mm); (ii) a 10 cm layer of thin gravel (Ø 5–10 mm); 
and (iii) a 10 cm layer of coarse gravel (Ø 10–20 mm). 
The photooxidation processes were carried out in the 2 L 
laboratory reactor equipped with a UV lamp by Philips. 
Due to the high temperature caused by the UV lamp, 
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the system was placed inside a 4 L cylinder with a larger 
diameter filled with water to regulate the temperature 
using a (water) coolant. The sample temperature was 
kept constant using a thermometer in the laboratory 
environment. Air was continuously supplied to the 
reactor chamber to mix the reactor contents and provide 
the oxygen necessary for photolysis. A laboratory-scale 
EAAS treatment system was built. The aeration tank (AT) 
was rectangular and had an effective volume of 4 L. It was 
connected to a 1 L cone-shaped settling tank (ST). Air was 
blown into the leachate through a pump at the AT, and 
distributed evenly using two diffuser stones. A baffle was 
constructed at the head of the AT to form a small area for 
feeding recycled effluent. Figure 1 shows a schematic of 
the different stages of leachate treatment.

MSWL treatment using BFLTS
An appropriate chemical coagulant was selected based on 
the characteristics of the raw leachate, COD, and turbidity 
removal efficiency using coagulation/flocculation tests in 
a jar test using aluminum sulfate, iron sulfate, and iron 
chloride as chemical coagulants at concentrations of 
0.8, 1.5, and 2 g L-1 and pH at different values within the 
optimum range of each coagulant: Al2(SO4)3 from 6 to 9; 
FeSO4.7H2O from 8 to 10, and FeCl3 from 5 to 8 have been 
achieved. These concentrations were selected based on 
previous studies (57,58). The pH of the leachate by adding 
the right amount of concentrated, 5 N H2SO4 and/or 5 N 
NaOH was adjusted. Appropriate contact times including 
2 minutes of rapid mixing at 150 rpm for coagulation, 30 
minutes of slow mixing at 50 rpm for flocculation, and 60 
minutes of settling to promote solids and sedimentation, 
were applied. The flocculation-coagulation process was 
carried out under optimal conditions, and the produced 
effluent was filtered through a sand filter to remove the 
residual floc before the AOPs. 

In this study, the advanced chemical oxidation process 
with UV-PS/H2O2 and Heat-PS/H2O2, each separately, 
was used to determine the effects of independent 
variables on the removal of desired parameters in the 
treatment of the leachate. In 500 mL of leachate, stock 

solutions of H2O2 and K2S2O8 were added to the reactor 
at predetermined doses introduced at doses reaching 
complete stoichiometric decomposition depending on 
the COD concentrations (59). After pH adjustment, 
during UV-PS/H2O2 treatment, pre-treated leachate 
and peroxides were mixed with aeration pump at room 
temperature. In the Heat-PS/H2O2 treatment, they were 
magnetically stirred and shaken continuously at different 
predetermined temperatures between 35 and 80 °C, in a 
1 L beaker. All experiments were performed in the pH 
range of 4-11, persulfate dose (1.5, 2.5, 3, and 4 g L-1), 
H2O2 dose (0.5, 1.5, 2, and 3 g L-1), reaction time of 20-90 
minutes, and temperature of 35-80 °C for Heat-PS/H2O2 
AOP. The values and ranges of the independent variables 
were determined based on previous studies (59-63).

Initially, the aeration tank was inoculated with 
acclimatized activated sludge prepared from the Behshahr 
compost leachate treatment plant. Then, by transferring 
the wastewater from the leachate oxidation stage to the 
aeration tank, the working volume of the leachate was 
fixed at 4 L. To set up the system, after feeding the reactor 
with leachate, aeration was done for about 18 hours. 
Then, a part of the treated leachate was discharged. The 
calculated sludge retention time (SRT) was between 
12-23 days for different leachate dilutions. The air was 
uniformly introduced into the leachate at the bottom 
of the AT through a pump and pipe equipped with a 
diffuser. The pH of the pre-treated leachate ranged from 
6.2 to 8.6. The temperature of the leachate varied from 
21 to 25 °C. After reaching a steady state, the leachate 
treatment efficiency was stabilized, and monitoring of 
the performance of the EAAS system was conducted. The 
leachate aerobic treatment process’s values and the range 
of parameters were determined based on preliminary 
studies and a literature review (64,65). The effluent 
resulting from different treatment processes by BFLTS is 
shown in Figure 2.

Statistical Analysis
Data were analyzed using SPSS version 25 and statistical 
methods of one-way analysis of variance (ANOVA) and 

Figure 1. Batch-flow leachate treatment system (BFLTS) image
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post hoc tests. When the P value is at < 0.05, there is a 
significant difference between the variables. Measurements 
were expressed as mean ± standard deviation.

Results 
Leachate characteristics
Table 1 shows the characteristics of leachate obtained 
from the municipal landfill in Qaem-Shahr city. It 
presents data on the maximum, mean, and minimum 
values of physicochemical properties, COD/BOD5 
levels, and the actual characteristics of the leachate. The 
results of this study indicate that the leachate contains 
significantly high levels of both COD and BOD5. This 
suggests that the leachate may have a substantial impact 
on the receiving water body. Therefore, it is crucial to 
implement effective treatment measures to mitigate the 
potential environmental impact of this leachate.

Coagulation/flocculation stage
The study found that FeCl3 was the most efficient 
coagulant for removing both COD and turbidity from the 
leachate. When FeCl3 was used, significant reductions in 
COD (up to 58%) and turbidity (up to 72%) were achieved. 
In comparison, alum (Al2(SO4)3) and FeSO4 only achieved 
moderate reductions, with COD reductions between 33 
and 46% and turbidity reductions between 29% and 35%.

The highest removal of COD and turbidity was achieved 
at pH 6 using a FeCl3 concentration of 0.8 g L−1. Therefore, 
FeCl3 was selected as the coagulant for the flocculation-
coagulation process.

After the flocculation-coagulation process, the effluent 
was then filtered through a sand filter to remove any 

residual floc before undergoing AOPs. This additional 
filtration step helps ensure that the leachate is free from 
any remaining particles or impurities before further 
treatment.

The values of the removal efficiency (%) of the 
parameters COD, BOD, TKN, and turbidity for the two 
different concentrations of leachate samples, maximum 
(L1), minimum (L2), in the process of coagulation-
flocculation using iron chloride are presented in Figure 3. 

Advanced oxidation processes 
The comparison of the removal efficiency of different 
AOPs in the COD removal of C-F/SF effluents was done 
in this study and is shown in Figure 4. Each of the UV-
H2O2, UV-PS, UV-PS/H2O2 and Heat-PS, Heat-H2O2 
and Heat/PS-H2O2 processes was effective in removing 
pollutants from leachate treatment. In these processes, 
oxidants are activated by UV radiation or heat. The UV-
PS/H2O2 process showed the highest level of leachate 
purification in removing COD, BOD, TKN, and turbidity.

Following the preliminary study, the optimal treatment 
process and its specific conditions for leachate with the 
highest COD removal capacity were identified at pH 7, 
utilizing UV radiation at 15 W (wavelength of 254 nm) 
with a reaction time of 70 minutes in the UV-PS/H2O2 
process. The COD removal capacity was found to be 
83.5% and 87.4% for leachates with the highest and lowest 
COD content, respectively (P < 0.05). The impact of key 
parameters (COD, BOD, TKN, turbidity) on two types 
of leachates (maximum (L1), minimum (L2)) in the AOP 
process (UV-PS/H2O2), employing the optimal amount of 
oxidant and pH, is depicted in Figure 5.

The COD removal efficiency in UV-activated 
photocatalytic AOPs decreases when the concentration 
of H2O2 exceeds 1.5 g L-1. Therefore, it was determined 
that 1.5 g L-1 is the optimal amount of H2O2. Conversely, 
all UV-activated processes utilizing 2.5 g L-1 persulfate 
showed enhanced efficiency in COD removal.

By increasing the concentration of PS up to 3 g L−1 
and H2O2 up to 2 g L−1 in the heat-activated peroxides 
process, the rate of COD removal increased. However, it 
was observed that peroxides are not very effective at low 

Figure 2. The effluent obtained from various treatment processes by 
batch flow leachate treatment system (BFLTS)

Table 1. Characteristics of leachate collected from the municipal landfill of Qaem-Shahr city

Parameter
Winter Summer

Maximum Mean ± SD Minimum Maximum Mean ± SD Minimum 

COD (mg/L) 31620 23900 ± 6303 16180 34260 26737 ± 6142 19214

BOD5 (mg/L) 12556 7966 ± 3747 3376 16142 10636 ± 4495 5131

BOD5/COD ratio 0.39 0.29 ± 0.07 0.2 0.47 0.36 ± 0.08 0.26

pH 8.6 7.5 ± 0.85 6.5 8.3 7.3 ± 0.81 6.3

EC (μS/cm) (20°C) 12470 9455 ± 2461 6440 15360 11140 ± 3445 6920

TSS (mg/L) 5640 3814 ± 1490 1989 5500 3450 ± 1673 1400

Turbidity (NTU) 981 679 ± 246 378 1100 725 ± 306 350

TKN (mg/L) 2130 1490 ± 522 850 1950 1280 ± 547 610



Zazouli et al

Environmental Health Engineering and Management Journal 2024, 11(2), 177-190182

temperatures. At 35°C, the reaction rate with the organic 
matter and the COD removal efficiency by peroxides were 
both very slow. The highest COD removal efficiency was 
achieved when using binary and triple processes with a 
dose of 3 g L−1 PS and 2 g L−1 H2O2, activated at 65°C for 
a reaction time of 90 minutes and applied at pH 7. Under 
these optimal conditions, the COD removal efficiency 
for each process was as follows: Heat-PS/H2O2 > Heat-
PS > Heat-H2O2, with values of 74.8%, 58.6%, and 34.5%, 
respectively (P < 0.05).

In all processes, increasing the initial leachate pH from 
4 to 7 increased COD removal efficiency. However, when 
the pH was raised to 9, the effect on the photocatalytic 
process was minimal and led to a decrease in efficiency. 

Additionally, in the triple process, increasing the pH 
from 9 to 11 further intensified the declining trend of 
COD removal efficiency. The influence of irradiation 
time and contact time, both important parameters, were 
investigated and the results are shown in Figure 6.

Extended aeration-activated sludge stage
In this phase, EAAS processes were applied to 
the treatment of the organic matter in leachate in 
coagulation/flocculation/sand filtration/AOP effluent, 
by applying optimal operating conditions for efficient 
removal of organics using an EAAS reactor. After a three-
week adaptation period of activated sludge, the MLSS 
concentration was maintained in the range of 2900-3500 
mg L-1 and the COD removal remained constant at 75%. 
The average BOD5 and COD of the effluent entering the 
extended aeration treatment system were 863 and 1546 
mg L-1, respectively. In the EAAS process, COD and 
biological oxygen demand removal rates were 84.2% and 
87%, respectively, with hydraulic retention time (HRT) 
of 18 hours and 87.7 and 91.7% with HRT of 36 hours 
(P < 0.05). The removal efficiency of four experimental 
variables of leachate under optimal conditions is shown 
in Table 2. 

The overall performance of the BFLTS in MSWL 
treatment
Table 2 provides a summarized overview of the effect of 
BFLTS on the efficiency of removing four experimental 
variables in the treatment process of leachate from Qaem-
Shahr city’s municipal landfill, under optimal conditions. 
The BFLTS system demonstrated an average removal 
performance of 99.2%, 83.2%, and 87.1% for COD, TKN, 
and turbidity pollutants, respectively.

In this study, the final treated leachate exhibited 
varying COD effluent concentrations for each type of 
leachate investigated. The maximum and minimum COD 
concentrations were found to be 278 ± 25 and 106 ± 10 mg 
L-1, respectively.

Other physicochemical characteristics of the effluent for 
maximum and minimum leachates, respectively, include 
pH 6.4, 7.3, electrical conductivity (EC) 531, 410 μS/cm, 

Figure 3. Removal efficiency (%) of four experimental variables of the 
landfill leachate with coagulation/flocculation pretreatment using FeCl3 
(0.8 g L-1 and pH 6)

Figure 4. The comparison of the removal efficiency of different advanced 
oxidation processes in the COD removal of C-F/SF effluents

Figure 5. The removal efficiency of four experimental variables of 
coagulation/flocculation/sand filtration effluent with AOP (sulfate-
hydroxyl radical) using UV (2.5 g L-1 PS, 1.5 g L-1 H2O2, pH 7, UV 15 W, 
temperature = 25 ± 2°C, time = 70 min)

Figure 6. Comparison of leachate COD removal efficiency over time for 
UV-PS/H2O2 and Heat-PS/H2O2 processes
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TSS 169, 138 mg L-1, and the color of the final effluent 
was clear in all types. In this study, an average of 82, 86, 
and 58% of metals were successfully removed during C-F/
SF, UV-PS/H2O2, and EAAS, respectively. The highest 
removal rate of metals, arsenic and nickel, was 70% and 
80%, respectively, in the UV-PS/H2O2 process. 

In this study, the effluent for the maximum and 
minimum leachates exhibited different physico-chemical 
characteristics. The pH values were measured at 6.4 
and 7.3, while the EC levels were recorded as 531 and 
410 μS/cm for the maximum and minimum leachates, 
respectively. TSS were found to be 169 and 138 mg/L-1 for 
the maximum and minimum leachates, respectively. The 
color of the final effluent was clear in both cases.

Discussion
Pretreatment of leachate with the process of coagulation, 
flocculation, and reduction of hydroxyl and sulfate radical 
substances absorbents causes better penetration of light 
in the solution and increases stimulation of the chemical 
oxidation reaction, and as a result, its effectiveness in 
leachate treatment increases. The presence of minerals 
and organic substances in the leachate, pH, stirring 
velocity, and reaction time are among the factors involved 
in the efficiency of physicochemical methods in leachate 
treatment (17,54,66). Consistent with the results of other 
studies conducted in this field, this research showed that 
FeCl3 is superior to the other two coagulants examined 
for the removal of all monitored pollutants in the leachate 
(57,67). Mainly due to the high concentration of humic 
substances and organic compounds in the leachate, the 
color of the leachate is black (57,68). Re-stabilization and 
lack of proper sedimentation of clots and the effect of 

leachate color and coagulant have a significant effect on the 
coagulation effect (P < 0.05) (58,69,70). In the treatment 
of landfill leachate using flocculation-coagulation and 
optimizing color removal efficiency, polyphenols and 
nitrates achieved removal efficiencies of 68.8%, 77.5%, 
and 81.0%, respectively. The optimal conditions in this 
study were found to be pH 7.66, a coagulant dose of 9.5 
g/L, a flocculant dose of 9.1 ml/L, and a stirring time of 
10 minutes (71).

During the UV/H2O2 process, more active OH radical 
species are produced by the activation of H2O2 by UV 
rays, which causes further oxidation of organic matter 
in solid waste leachate (72,73). In the use of AOPs based 
on hydroxyl and sulfate radicals to remove persistent 
organic pollutants from wastewater, the radicals react 
with many organic chemicals at nearly emission-
controlled rates. The released radicals are the initiators 
of the reaction in advanced photocatalytic oxidation 
processes and can decompose organic materials (74,75). 
The landfill leachate, treated with 4 UV lamps and 232.7 
mM H2O2, achieved 72% and 65% removal efficiencies 
for color and COD in 300 minutes. In contrast, the less 
concentrated leachate (20% strength) achieved 91% color 
and 87% COD removal in just 120 minutes. These results 
demonstrate the effectiveness of the UV/H2O2 process 
as a pre-treatment or treatment technology for landfill 
leachate (76).

At H2O2 concentrations of more than 1.5 g L-1, the 
removal efficiency of COD decreases by the UV-activated 
photocatalytic AOPs. Therefore, the concentration of 1.5 
g L-1 was chosen as the optimal dosage of H2O2. All UV-
activated processes at 2.5 g L-1 persulfate showed higher 
efficiency in COD removal. This condition might be 
due to the high reactivity of PS compared to H2O2 under 
catalyzer activation (77). During the elective reaction, the 
less reactive H2O2 may not be completely photolyzed and 
produce a lower concentration of ion (78). According to 
the results of other studies, this study also showed that 
the rate of COD removal with UV/PS as a treatment 
method was much faster compared to UV/H2O2 (79,80). 
The findings of the study evaluating the effectiveness 
of UV/Fe2 + /H2O2 and UV/Fe2 + /S2O8

2- processes in the 
treatment of landfill leachate pollutants showed that UV/
Fe2 + /S2O8

2- had a better performance than Photo-Fenton, 
and achieved 76.34% COD, 71.44% TOC and 88.94% 
color removal, compared to 65.58% COD, 48.12% TOC, 
and 86.65% color removal. Optimizing the oxidant dose 
and using coagulation/flocculation techniques increased 
the photocatalytic efficiency. In addition, UV light was 
observed to have the least effect due to the dark color of 
the leachate (81). 

UV lamp power is one of the effective parameters in 
photocatalytic processes (82). When exposed to UV 
rays, peroxides absorb photons, leading to the formation 
of electron pairs (83). At higher-intensity radiation, 

Table 2. Impact of BFLTS on the removal efficiency of four experimental 
variables in the treatment process under optimal conditions for leachate 
from the municipal landfill of Qaem-Shahr city

Type 
leachate Parameter Raw 

Leachate C-F/SF UV- PS/
H2O2

EAAS

Maximum

COD (mg/L)
(% removal) 31620 13280 ± 460

(58)
2191 ± 70

(83.5)
278 ± 25
(87.3)

BOD (mg/L)
(% removal) 12556 6730 ± 350

(46.4)
1245 ± 15

(81.5)
99 ± 10

(92)

BOD5/COD ratio 0.39 0.5 0.57 0.35

TKN (mg/L)
(% removal) 2130 1586 ± 75

(25.5)
610 ± 20
(61.5)

345 ± 15
(43.4)

Turbidity (NTU)
(% removal) 981 274 ± 10

(72)
191 ± 5
(30.2)

101 ± 3
(46.8)

Minimum

COD (mg/L)
(% removal) 16180 7151 ± 300

(55.8)
901 ± 30
(87.4)

106 ± 10
(88.2)

BOD (mg/L)
(% removal) 3376 2785 ± 150

(17.5)
481 ± 15
(82.7)

41 ± 3
(91.4)

BOD5/COD ratio 0.2 0.38 0.53 0.38

TKN (mg/L)
(% removal) 850 743 ± 50

(12.5)
407 ± 10
(45.2)

161 ± 10
(60.4)

Turbidity (NTU)
(% removal) 378 158 ± 10

(58)
122

(22.6)
56 ± 2
(53.5)
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peroxides absorb more photons, leading to the formation 
of more electron pairs. By increasing the leachate 
turbidity and decreasing the absorption of UV photons, 
the effect of UV intensity on the activation of peroxides 
and the removal of organic substances is reduced (84). In 
addition, the reduction of UV penetration in the leachate 
occurs in response to the increase in the concentration 
of organic matter, and thus, prevents the activation of 
oxidants (85,86). The UV irradiation process alone was 
ineffective for COD removal (COD removal is only 10%-
20%) (87). On the other hand, in the investigation of the 
effectiveness of PS without the presence of UV radiation 
in reducing the leachate COD, only 5% COD removal was 
achieved. Therefore, PS alone is not effective in reducing 
leachate COD (58). Although the COD removal efficiency 
decreased with the increase of the peroxide dosage above 
the optimum level, the COD removal efficiency was lower 
at the dosages below the optimum level. The increase 
in the removal rate of COD with the increase in the 
concentration of peroxides was caused by the production 
of SO4

•– and •OH radicals in response to the increase in 
the concentration of PS and H2O2. But with the increase 
of PS concentration from the optimal amount, the SO4

•– 
radical becomes PS radical with the oxidation-reduction 
potential lower than the SO4

•− radical (88,89). Also, SO4
•– 

radical can act as a scavenger radical and become an agent 
that facilitates the conversion of the SO4

•– radical to PS 
(90). The synergistic process based on PS/H2O2 activated 
with UV has better efficiency in removing COD from 
the leachate. The combined K2S2O8 and H2O2 work better 
as oxidants if they are added together than if working 
separately (91). 

At higher temperatures, the removal rate decreased, 
which may be due to the effect of temperature on the 
rate of H2O2 and PS decay (59,92,93). The synergistic 
effect of oxidants is very effective in leachate treatment. 
This increase in removal efficiency was achieved in triple 
processes. Using both H2O2 and persulfate reagents, 
the performance and efficiency of leachate oxidation 
improved. In the PS/H2O2 process under the best 
conditions, the removal efficiency was 81% and 83% for 
COD and NH3-N, respectively (91). In different AOP 
processes, the removal efficiency of leachate pollutants was 
higher at pH 7 ± 0.2, and in leachate with higher pH, the 
pH decreased with time. Previous studies have reported 
a decrease in pH over time and a neutral effluent when 
using UV/PS for leachate treatment, which is consistent 
with the findings of this study (58,94,95). Reducing the 
pH by reducing the level of alkalinity reduces the degree 
of inhibition of CO3

2− and HCO3
− and increases oxidation 

efficiency (59).
Using biological treatment methods to treat solid waste 

leachate alone and independently is not very effective 
due to the high organic load and the presence of toxic 
substances and heavy metals in the leachate, because it has 

an inhibitory effect on the growth and metabolism of the 
microbial mass (96-98). The application of EAAS systems 
has proven to be successful in treating landfill leachate 
by achieving significant removal rates. Specifically, these 
systems have been able to remove COD by 97.03% to 
98.87% (99), TN by 81.5% (100), and 77.1% (101).

The standards for discharging treated sewage effluent 
into the environment typically specify the maximum 
limits for various parameters, which can vary based on 
local and national regulations. In Iran, the standards for 
discharging wastewater and reusing it for surface water, 
wells, agriculture, and irrigation differ. For instance, the 
maximum permissible limits for BOD5, COD, and TSS for 
discharge into surface water are 30 mg/liter (instantaneous 
50), 60 mg/liter (instant 100), and 40 mg/liter (instant 60), 
respectively, with an opacity limit of 50. The standard pH 
for discharge into surface water is 6.5-8.5 (102).

When comparing the results of this research with 
Iranian standards, the close alignment of the values 
obtained in the effluent of the BFLTS treatment system 
with the regulatory standards indicates its high efficiency 
in effectively removing impurities through this combined 
system. The concentration of the parameters in the 
effluent is detailed in Table 2.

Treated leachate must be disinfected using processes 
such as chlorination, UV-radiation treatment, or 
ozonation before entering the receiving environment and 
water sources. This is done based on the effluent quality, 
ease of installation, and ease and cost of maintenance and 
operation, as well as the effects on plants, animals, and 
recreational users of the reuse and disposal of the final 
effluent to the respective receiving waters (103-105).

The biodegradability ratio, which typically decreases 
over time, is considered a measure of the biodegradability 
of an organic matter (14). The average BOD5/COD 
ratio of effluent in the C-F/SF, UV-PS/H2O2, and 
EAAS systems were 0.44, 0.55, and 0.36, respectively. 
Therefore, it shows that due to the lower degradability 
of organic matter in the effluent of the EAAS system, 
more biological treatment was achieved. Persulfate/H2O2 
was more effective in increasing the biodegradability of 
leachate, and during oxidation processes, the ratio of 
biodegradability increased from 0.09 to 0.17 (91). Based 
on the data, various types of AOPs have been employed 
to effectively degrade organic materials under diverse 
operating conditions. Among these processes, the UV-
PS/H2O2 AOP has shown promising results and can be 
considered as a highly efficient treatment method for 
MSWL treatment. The leachate treatment study showed 
significant improvement in performance, with a removal 
efficiency exceeding 80% for all parameters studied, when 
AOP were combined with biological treatment. This 
integration enabled compliance with discharge limits, 
ascribed to the biological removal of biodegradable 
compounds generated by UV/H2O2 treatment (106).
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The removal efficiency of three different treatment 
processes used by a BFLTS was evaluated for four 
experimental variables. C-F/SF, UV-PS/H2O2, and EAAS 
systems showed average efficiencies of 57%, 85%, and 
87% in COD removal and 32%, 82%, and 91% in BOD 
removal in all types of leachates. UV-PS/H2O2 and EAAS 
processes performed better than conventional C-F/SF 
processes in removing COD and BOD. The UV-PS/H2O2 
process demonstrated the highest efficiency and best 
performance in removing TKN from leachate, achieving 
an average rate of 53.3%, outperforming other processes. 
The turbidity removal performance in each of the C-F/
SF > EAAS > UV-PS/H2O2 processes was 65%, 50%, and 
26%, respectively. The results indicated that the UV-PS/
H2O2 system generated a significantly higher-quality 
effluent compared to the C-F/SF and EAAS systems in 
terms of COD and TKN. Additionally, the C-F/SF system 
outperformed other processes in removing turbidity. 

It is crucial to take into account and acknowledge other 
potential factors that could affect the performance of 
the methods used to remove or reduce the investigated 
parameters. These factors may encompass variations in 
environmental conditions, the presence of co-existing 
contaminants, and potential interactions between the 
treatment processes and the specific characteristics of the 
leachate (37,107,108). By recognizing and examining these 
additional factors, a more comprehensive understanding 
of the overall effectiveness of the treatment methods can 
be attained.

The combined process of coagulation, flocculation, 
advanced oxidation, and extended aeration in solid 
waste leachate treatment has several economic aspects 
(15,24). The combination of coagulation, flocculation, 
advanced oxidation, and extended aeration processes can 
lead to improved treatment efficiency and performance 
(109,110). Coagulation and flocculation help in the 
removal of suspended solids and organic matter, while 
AOPs such as UV-PS/H2O2 or UV/PS can further degrade 
recalcitrant organic compounds (17,111). Extended 
aeration provides additional biological treatment to 
remove remaining organic pollutants (112). The overall 
improved treatment performance can lead to reduced 
treatment costs by minimizing the need for additional 
treatment steps or reducing the amount of chemicals 
required for treatment.

The use of coagulants, flocculants, and advanced 
oxidation agents can be optimized through the combined 
process (109,113). By effectively removing contaminants 
in the early stages of treatment, the need for excessive 
chemical dosing can be minimized. This reduction 
in chemical usage can lead to cost savings and lower 
operational expenses. Extended aeration, which involves 
the use of biological processes to treat organic pollutants, 
can be more energy-efficient compared to other treatment 
methods (114,115). The combined treatment process 

can lead to the minimization of sludge production, 
particularly through the use of AOPs, which can degrade 
organic compounds to simpler, more biodegradable forms 
(110,116). This can result in lower disposal costs and 
reduced handling and transportation expenses associated 
with sludge management.

The combined treatment process can ensure that 
the treated leachate meets stringent environmental 
regulations and discharge standards (117). By achieving 
high treatment efficiency and pollutant removal, the 
facility can avoid potential fines and penalties associated 
with non-compliance, thus, reducing overall operational 
costs (118,119). In summary, the integrated approach 
of coagulation, flocculation, advanced oxidation, and 
extended aeration in the treatment of solid waste 
leachate offers significant economic advantages. These 
benefits stem from enhanced treatment effectiveness, 
decreased reliance on chemicals, improved energy 
efficiency, reduced sludge generation, and adherence to 
environmental regulations. Collectively, these factors 
contribute to cost savings and overall economic gains for 
the treatment facility.

Strengths, limitations, and future research
This study investigated the treatment of landfill 
leachate using a comprehensive approach that includes 
coagulation, flocculation, advanced oxidation, and 
extended aeration. The authors emphasize the importance 
of further research into various advanced chemical 
oxidation methods and the use of combined treatment 
systems tailored for leachate treatment, with a focus on 
natural biological treatment. Due to the complexity and 
instability of chemical oxidation processes, there are 
limitations in accurately understanding these processes 
and providing appropriate scientific solutions. A detailed 
examination of the removal of resistant and hazardous 
pollutants from the environment is crucial. These 
pollutants can have very adverse effects on human health 
and the environment. The assessment of the efficiency 
of removing wastewater with higher levels of pollution 
requires an evaluation of the possibility of integrating 
other processes. The use of physical processes such as 
ultrafiltration and nanofiltration can also improve the 
removal efficiency of resistant and hazardous pollutants 
from leachate. Ultimately, a thorough examination of 
the removal of resistant and hazardous pollutants from 
wastewater requires an evaluation of various treatment 
processes and the possibility of integrating them. These 
actions can contribute to enhancing the removal efficiency 
of pollutants and improving the quality of leachate. 

Conclusion
The study findings show that the evaluated treatment 
processes, including C-F/SF, UV-PS/H2O2, and EAAS, 
showed significant effectiveness in removing pollutants 
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from municipal landfill leachate. The BFLTS system 
showed strong performance in removing various 
pollutants such as COD, BOD, TKN, TSS, and turbidity. 
Overall, this study shows that flocculation-coagulation 
followed by the AOP process and extended aeration 
can be a promising and efficient treatment method for 
landfill leachates. The results of the study highlight the 
effectiveness of combining physicochemical and biological 
processes to improve the removal efficiency of pollutants 
from leachate. This highlights the potential of combined 
treatment methods in effectively addressing the challenges 
associated with leachate pollution. The findings suggest 
that the synergistic approach of employing multiple 
treatment processes can significantly improve the overall 
remediation of leachate-contaminated environments.
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