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Introduction
Sanitation systems that do not require water for feces 
flushing are called dry toilets, sometimes referred to 
as non-flush or waterless toilets (1). Dry toilets are 
waterless sanitary systems appropriate for places with 
scarce water supplies or where centralized sewage 
systems are prohibitively expensive (2). They provide 
responsiveness, low prices, sustainability, and water-
saving. The management of human waste is a crucial 
aspect of everyday life that significantly influences the 
comfort of individuals (3). Sustainable sanitation services 
in developing countries face serious challenges due to the 
inadequate management of fecal sludge, a result of rapid 
urbanization and population growth (4). The methods 
and techniques used to collect and take away human 
excreta have evolved and vary by location (5).

In 2015, 82% of the world’s urban population and 
51% of its rural population (8 billion people) had access 

to improved sanitation facilities (6). Out of the 5 billion 
people, 2.8 billion (or 38%) use a piped sewer system, 0.9 
billion use septic tanks or pit latrines, and 1.3 billion use 
vented improved pit, pit with slab, or composting toilets, 
respectively. In areas with inadequate sewage disposal 
and an ineffective or non-existent hydraulic network, 
dry composting toilets are being used more frequently 
as practical sanitation technologies (7). The leftovers of 
these systems are increasingly used as organic fertilizer 
in semi-urban agriculture, often without any assessment 
of hygienic quality, which poses a serious risk to human 
health (8). 

The term “bio-toilet” refers to a dry toilet or composting 
toilet that uses sawdust as a synthetic soil substrate for 
the bioconversion of human feces into compost. This 
compost can then be used as a soil conditioner or an 
organic fertilizer rich in nitrogen (N), phosphorus (P), 
and potassium (K) (9). The bio-toilet mainly consists of 
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Abstract
Background: An essential component of environmental sustainability and sanitation is the management 
of dry toilets, especially waste disposal. Understanding the composition of the brown water from dry 
toilets, putting the proper composting technique in place, and guaranteeing safe disposal and reuse 
procedures are all necessary to handle the waste successfully. It has been discovered that brown water, 
sometimes known as feces, can be used for brick-making, fuel, fertilizer, and other purposes.
Methods: This review focuses on dry toilet technology, management processes, and sanitation systems 
in Ethiopia and other underdeveloped nations. It utilizes secondary information and searches from 
Google scholars, Library catalogs, and Researchers to comprehend dry sanitation systems, including 
their implementation, use, and maintenance. Keywords used in the search include “in-situ treatment,” 
“fecal sludge treatment,” “fecal slurry management,” and “brown water treatment.”
Results: The review used a total of 108 articles and books, agricultural research, and reports on the 
feces’ physical, chemical, and biological characteristics. It also discussed risks associated with the 
mismanagement of feces, including parasitic diseases in exposed humans. The main aim of the review 
was to develop an understanding of brown water uses, composition, and management and select the 
proper method of composting with dry toilets. 
Conclusion: Dry toilets in developing countries are utilized for ecological sanitation and agriculture, 
with feces potentially used as fertilizer. Utilizing feces as fertilizer is a sustainable, eco-friendly, and 
environmentally responsible practice that can increase productivity while maintaining a clean 
environment.
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a toilet bowl, composting reactor, ventilation, and mixing 
systems (8). After using the toilet, a button activates a 
mixer that blends sawdust in the compost reactor. The 
toilet paper and other human waste are quietly and 
odorlessly mixed into the sawdust matrix, where aerobic 
biodegradation occurs (10). 2.4 billion people still lacked 
access to better sanitation facilities in 2015, forcing them 
to share toilets, use primitive toilets (pit latrines without 
a slab or platform, hanging latrines, and bucket latrines), 
or use open defecation (3). Given that the essential 
components of artificial fertilizer will eventually be 
depleted, it would be more logical to utilize human waste 
for agricultural purposes (6). Using human waste for 
agricultural purposes is not new (11). There are primarily 
two methods of use: collecting and using urine and feces, 
or separating them (12). The sustainable development 
goals and national sanitation management regulations 
provide a framework for sanitation in Ethiopia’s towns 
and cities. However, implementation is minimal and 
largely relies on customary traditions (13). 

In locations with poor sewage disposal and water 
scarcity, the dry-composting toilet, which requires 
neither water nor sewage facilities, is a viable solution 
(14). The physical and mental health of the populations 
living in low-income nations, as well as the prevention 
of environmental contamination, critically depend on 
the safe disposal or sanitation methods used for human 
waste (15). In low-income countries like Ethiopia, on-site 
sanitation (OSS) systems are the most prevalent method 
for managing excreta (16). These facilities can provide 
a hygienic and efficient method of waste disposal by 
treating human waste at its source (17).

The current open-site sanitation (OSS) systems, 
however, need improvement and require further research 
and development (8). The process of composting is not an 
innovation; it simply regulates a natural decomposition 
process (18). Composting offers the advantage of 
producing less mass, volume, and water than fresh 
dung, thereby requiring less transportation (19). 
Pathogens, parasites, weed seeds, and odor emissions 
are all eliminated, providing concurrent advantages for 
land application (20). Using composting toilets, human 
waste is transformed into safe humus. It is crucial to 
ensure low prices, minimized risks, and bulk discounts 
beforehand (21,22). When organic waste is placed in 
the ground and allowed to decompose under controlled 
aerobic conditions, it undergoes a process that results in 
a mature, stable, and sterilized final product that is free of 
pollutants and foreign materials, with no negative effects 
on the environment. However, composting is associated 
with carbon and nitrogen losses, as well as the release of 
greenhouse gases. Nutrient release is delayed after soil 
addition because composting stabilizes the nutrients 
(19). Compost also improves the biological and physical 
properties of soil and has a disease-suppressing effect (22). 

The purpose of the review was to understand the 
physical, chemical, and biological properties of brown 
water and different types of dry toilet design systems. These 
insights are critical for developing successful management 
solutions. It also aids in comprehending the possible health 
risks, such as disease transmission and contaminated 
water sources, that may arise from inappropriate feces 
management. The study also evaluated how brown 
water management techniques affect the environment, 
specifically how they affect microbiological pollution, 
nutrient loading, and groundwater contamination. To 
support well-informed decision-making, it assesses 
both current and developing solutions for treating and 
getting away from brown water. The review also provides 
evidence-based recommendations for sustainable and 
safe sanitation practices that are later used as fertilizers 
by composting methods, which in turn informs policy 
formulation and regulation. It also encourages creativity 
and investigation, pointing out knowledge gaps and 
areas needing improvement in sanitation and waste 
management.

Materials and Methods 
Search techniques used 
The systematic review, search, and information-
gathering process utilized most articles, journals, and 
books related to dry toilet management and sanitation in 
Ethiopia, other underdeveloped nations, and developed 
countries. The search was conducted between July 1, 
2023 and November 28, 2024. A review was conducted 
to gain a further understanding of dry sanitation systems, 
including their implementation, use, and maintenance. 
The relevant technologies for this review were searched 
using databases such as Web of Science, Scopus, Google 
Scholar, Research Gate, and other catalogs using keywords 
“in-situ treatment,” “fecal sludge treatment,” “fecal slurry 
management,” “on-site sanitation,” “dry toilet systems 
in underdeveloped countries,” “utilization of feces and 
management,” and “brown water treatment.” These terms 
are significant in the context of dry toilet technology. 
Further search terms included the primary WHO 
classification of pathogen treatment and control methods, 
such as “anaerobic digestion,” “fecal composting,” 
“utilization of feces as fertilizer,” and “utilization of 
feces as energy,” as well as references from books, 
journals, Wikipedia, and other online publications and 
encyclopedias. Finally, by identification and screening, a 
total of about 93 articles and 15 books were selected and 
included in the manuscript depending on the similarity 
with the title, objective, and time of publication.

Results
The review on dry toilets and their management considered 
functionality, durability, user experience, environmental 
impact, cost-effectiveness, health and safety, and 
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comparative analysis to make informed decisions about 
toilet options. A total of about 210 papers and reviews 
have been searched and identified. As shown in Figure 1, 
after excluding duplicates and papers irrelevant to the 
review, a total of 93 articles and books were included. 
Among these articles and books, papers reported on 
dry toilet management and the use of feces as fertilizers 
in different localities, especially in developing countries 
like Africa and Asia. Other papers included reports on 
feces’ physical, chemical, and biological characteristics 
and procedures for composting and using it as fertilizer. 
Additionally, risks associated with the mismanagement 
of feces and problems for humans, water bodies, and soil 
were discussed by measuring the prevalence of parasitic 
diseases in exposed humans. The ways of contamination 
in water, soil, and vegetables, as well as data regarding 
the measured health effects of contamination from 
brown water and the contents of useful nutrients in 
brown water that plants, use to improve crop production, 
were reported by different researchers. Generally, many 
researchers use brown water rather than disposing of it 
first as environmental mitigation, and then, as a useful 
material, energy, and nutrient.

Composition of brown water 
The physical-chemical and biological parameters along 
with the composition of brown water with their respective 
concentration are in (Table 1) understanding these 
parameters was essential for determining the suitability of 
brown water for various applications 

Management of brown water 
Figure 2 depicts the management of brown water, which 
includes collection, storage, transportation, and finally 
reuse or disposal. Furthermore, the diverse approaches to 
handling brown water with different kinds of dry toilets, 
as shown in Figures 3-6, have been thoroughly reviewed 
and discussed inexpensively.”

Uses of brown water
Brown water can be used to create a nutrient-rich compost 
that enhances soil structure and enriches agricultural land, 
as shown in Figure 7. Additionally, Figure 8 illustrates 
how biogas, a renewable energy source, is produced 
through the anaerobic digestion of excrement.

Discussion
Physicochemical characteristics of brown water (feces)
The solid or semisolid remains of food that the human 
small intestines are unable to digest are known as human 
feces (33). it contains bacteria, and a small number of 
metabolic byproducts, including bacteria-modified 
bilirubin, dead intestinal epithelial cells, and bacteria. 
It is eliminated during the process of defecation (4). 
Comparable to the feces of other animals, human feces 
differ substantially in size, color, and texture depending 
on the food, digestive system, and overall state of health 
(34). Depending on diet and health, the appearance of 
human feces varies greatly (35). 

Another physical characteristic of feces is temperature, 
which may influence their use. The surrounding air 

Figure 1. Searching process of studies, evaluation, and selection
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temperature was consistent with the average temperature, 
which was 25 °C. About 75% of fresh feces is water, and 
the remaining 7%-16% of the solids consist of organic 
materials (36). These organic solids contain between 
25%-54% bacterial biomass, 2%-5% nitrogenous matter 
or protein, 25% carbohydrates or undigested plant 
material, and 1%-2% fat. Variations in the physiological 
odor of feces can be attributed to diet and overall health 
(8). A fecal pH test includes characterizing a sample of 
feces by detecting its acidity or basicity (9). The pH of the 
raw feces ranged from 6.5 to 8.5. This pH range backs up 
the idea that sludge’s pH could be somewhat acidic and/
or quite basic(5) Research shows that employing acidic 
detergents to clean toilets may cause the sludge in public 
toilets to have a lower pH value (37). Despite the presence 
of waste, between 50% and 80% of feces (excluding water) 
consist of bacteria, which are present in your intestines 
during digestion and are then expelled (3,38). Increased 
fecal coliform levels are often used as a warning indicator 
for inadequate water treatment. Break in the integrity 
of the distribution system, and probable pathogen 
contamination (16). Both animals and humans excrete 
a vast number of viruses (8); human excreta contains 
diverse viruses, including coronaviruses, enteroviruses, 
and hepatitis A (7). Rotavirus is the most common cause 
of acute non-bacterial gastroenteritis in infancy and 
childhood(39). Intestinal protozoa cause severe health 
problems in children, the elderly, and people who drink 
contaminated water or food (40).

Chemical composition of brown water 
Excreta mass and composition are heavily influenced 
by people’s dietary choices (41). Table 1 shows the 

composition of feces as investigated by previous 
researchers. Fresh feces contain around 75% water, with 
the remaining contents consisting of 84%-93% organic 
substances (18). These organic solids consist of 25%-
54% bacterial biomass, 2%-25% protein or nitrogenous 
material, 25% carbohydrate or undigested plant tissue, 
and 2%-15% other materials. Proteins and lipids are 
produced in the colon through secretion, epithelial 
shedding, and the activity of gut microorganisms. These 
proportions vary significantly and are influenced by 
various factors, including nutrition and body weight (8). 
The remaining solids include calcium, iron, phosphates, 
oxygen, nitrogen, lead, magnesium, and other elements.

Environmental issues, feces management, and 
applications of feces
Environmental issues with inadequate feces management
Environmental sanitation aims to develop and maintain 
a clean, healthy, and functional physical and natural 
environment (42). Toilets with septic tanks and pit 
latrines are examples of OSS systems that are crucial 
for providing access to toilets in both rural and urban 
areas (14). Microbial contamination is an increasing 
environmental issue that poses a threat to human health 
(43,44). Access to improved sanitation is critical for 
sustaining human health (45). Personal and private 
sanitation is a fundamental human right, yet universal 
access is a significant issue in many nations (17). Despite 
all the advances made in wastewater disposal over the 
past century in Western cultures, sewage still has several 
detrimental effects on the environment (33). Excessive 
use of water, resources, and money can lead to damage to 
aquatic ecosystems and contamination of sewage sludge 
by microorganisms (33). Some problems related to the 
unhygienic sanitation system will be as follows.

Problems in human and animals health
Improper processes and disposition of human waste 
are significant causes of dangerous diseases (46). These 
illnesses can affect people, plants, and animals. Untreated 
human waste poses a hazard to the health of all living 
beings on the planet, leading to the killing of animals 
(47). In low- and middle-income nations, animals living 
near people often carry a variety of viruses that can infect 
humans and spread through their feces (48). Contact with 
human waste poses a significant risk to human health 
(49).

Contamination of surface water bodies
Water is essential for life; however, many people lack 
access to clean, safe drinking water and die as a result of 
waterborne diseases (50). Open defecation threatens the 
safety of the water supply because human waste in the 
open environment can be carried into water bodies during 
rainstorms. These bodies of water are the main sources of 

Table 1. Chemical composition of feces (8)

Parameter Concentration

Moisture content (%) 80.0 ± 5.0

pH 5.3 ± 0.2

Electrical conductivity (mho/cm) 60.0 ± 15

Organic matter (% dry weight) 82.0 ± 5.0

Carbon-C (% dry weight) 42.5 ± 2.5

Nitrogen-N (% dry weight) 4.1 ± 0.4

C: N ratio 12.0 ± 1.0

Phosphorous-P2O5 (% dry weight) 1.1 ± 0.2

Potassium-K2O (% dry weight) 2.8 ± 0.17

Calcium-CaO (% dry weight) 4.5 ± 0.80

Magnesium-Mg (mg/g dry weight) 8.2 ± 1.5

Sodium-Na (mg/g dry weight) 8.5 ± 1.3

Iron-Fe (mg/g dry weight) 3.8 ± 0.9

Zinc-Zn (mg/g dry weight) 0.24 ± 0.04

Copper-Cu (mg/g dry weight) 0.004 ± 0.005

Manganese-Mn (mg/g dry weight) 0.27 ± 0.05

Nickel-Ni (mg/g dry weight) 0.009 ± 0.002
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drinking water for humans and livestock (51). According 
to research conducted in Ethiopia, uncontrolled waste 
management practices, insufficient sanitary services, and 
improper fertilizer management are all problems aquifers 
contribute to aquifers contamination (52). Numerous 
protozoa, bacteria, viruses, and parasites can be found 
in human feces (53). One of the major global challenges 
for the aquatic environment is water pollution caused 
by microorganisms (7). A water body’s bacterial load is 
increased by fecal waste, hospitals, industries, and cow 
farms (54). Coliform bacterial groups have traditionally 
been associated with public health security and have long 
been used as indicators of microbial contamination in 
water. Escherichia coli, a type of coliform bacteria, is an 

indicator of fecal contamination among coliform bacteria 
(55). The multiple-tube fermentation method has been 
traditionally used to identify coliform in water samples 
by fermenting lactose sugar, leading to the production of 
acid and gas (16). Fecal contamination, which primarily 
originates from human waste or the excrement of warm-
blooded animals, introduces disease-causing germs into 
recreational water (9). 

Contamination of soil 
The term “soil pollution” refers to the presence of a 
chemical or material in the soil that is out of place, present 
at a higher-than-normal concentration, and has negative 

Figure 2. Brown water management by collection, storage, transport, and use (23,24)

Figure 3. Bucket toilet (25)

Figure 4. Pit latrine (26)

Figure 6. Composting toilet (28)

Figure 5. Urine-diverting dry toilet (27)
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effects on any organism that is not the intended target 
(56). Soil pollution is a concealed threat because it is often 
challenging to measure or detect. Microbes from human 
feces were found in high numbers in soil and stored water, 
but not in source water (20).

Management of brown water (feces)
Collection, storage, transport, and use
Lack of access to sanitary facilities may be a factor in the 
pollution of the environment and its social effects (49). 
Human excrement may build up outside residences, in 
surrounding drains, and in waste dumps in unsanitary 
conditions, causing contamination of the environment 
(57) As shown in Figure 2 fecal sludge management is also 
known as the process of safely using or 

disposing of fecal sludge after it has been stored, 
collected, transported, and treated. The “value chain” or 
“service chain” of fecal sludge management is made up of 
the collection, transportation, treatment, and final use of 
feces (4). Fecal sludge is commonly defined as the waste 
that accumulates in onsite sanitation systems, such as pit 
latrines, septic tanks, and container-based solutions, and is 
not specifically transported through a sewer (58). Septage 
is the term for the fecal sludge removed from septic tanks. 
Best practices for fecal waste storage, collection, and 
transportation are available for use by a range of service 
providers, from small businesses with a single cart to large 

enterprises with multiple transport vehicles operating 
in densely populated urban areas (17). Sludge collection 
methods must be emptied and transported to a designated 
treatment facility once they are full (59). Depending on 
the type of material recovered by the procedure used to 
treat feces, several products can be made (60). The reuse 
of fecal sludge adds value to its treatment and has the 
potential to generate income by harnessing the inherent 
resources in the waste (18). Fecal sludge collected from 
OSS systems is treated to prevent any negative impact 
on the environment or public health, both from its solid 
and liquid components (40). Finally, it is crucial to ensure 
the safe disposal of treated sludge, especially the portion 
that cannot be used to recover resources for reuse (61). 
Regenerating items for reuse is essential to ensure that 
waste is kept away from people and the environment. 
Reusing the treatment plant’s internal resources nutrients, 
electricity, and water, all of which have inherent value 
could result in financial gain (55)..

Brown water (feces) management techniques using dry 
toilets
Almost half of the world’s population lacks access to 
basic sanitation (62). By 2020, just 54% of the world’s 
population will have access to properly run sanitation 
services (57). In poor nations where most of the 
population defecates in open or public spaces, building a 
latrine is the first step on the sanitation ladder. Excreta 
disposal that involves burial is practically always safe (63). 
Only 16% of people in Ethiopia live in cities. In urban 
Ethiopia, 14% of families use upgraded toilets that are not 
shared with other households, while 32% use communal 
toilets. Urban families use unimproved toilet facilities 
in the vast majority (54%). An open-pit latrine is the 
most prevalent type of unimproved toilet, being utilized 
by 37% of households in towns and cities (61). Urban 
people suffer from a lack of urban constructions and, 
more frequently, water, sanitation, and hygiene services 
in many African nations, including Ethiopia. In city slums 
and densely populated urban areas, the situation is more 
severe (17). There are different types of dry toilets types to 
manage feces and control pollution (64), some of which 
are discussed below.

Figure 7. Uses of human feces as fertilizer (29,30)

Figure 8. Biogas production from human waste (31,32)
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Bucket toilet
A bucket (pail) is utilized to collect feces in a basic 
dry toilet referred to as a bucket toilet (14). Typically, 
excrement and urine are combined in one bucket, leading 
to odor issues (65). The bucket could be located inside 
a house or in other small nearby construction(65). An 
unimproved bucket toilet may be a better option than 
open defecation in situations where people lack access 
to adequate sanitation, especially in low-income urban 
areas in developing countries (6). They may provide 
temporary assistance with emergency sanitation, such as 
after earthquakes. In contrast to an improved sanitation 
system, the unimproved bucket toilet could pose serious 
health risks (18). In the past, several nations used the 
bucket toilet system, along with municipal collection 
services. The basic bucket toilet evolves into a variety of 
other systems that are more appropriately referred to as 
container-based sanitation systems, composting toilets, 
or urine-diverting dry toilets (UDDTs) (1).

As shown in Figure 3, a bucket toilet, also known as 
a composting or portable toilet, is a simple and efficient 
alternative to traditional flush toilets when water or 
sewage infrastructure is unavailable or as a temporary 
solution. The components include a bucket, seat, lid, 
absorbent material, biodegradable bags (optional), 
ventilation system, and working mechanism of 

a bucket toilet. This involves preparation, usage, adding 
absorbent material, maintenance, composting, and 
cleaning.

Pit latrine
Pit toilets are the most fundamental and cost-effective 
type of sanitation for better hygiene. A pit latrine is a basic 
type of sanitation system commonly used in areas that 
lack access to conventional flush toilets (17). According 
to studies by Mihelcic et al (66) and Zhang et al (67), a pit 
latrine, also known as a pit toilet, collects human waste 
in a hole in the ground. A drop hole in the floor, which 
may be connected to a toilet seat or squatting pan for user 
comfort, enables urine and waste to enter the pit. When 
constructed properly, pit latrines can effectively separate 
human waste from human contact and minimize the 
transmission of fecal-oral diseases (5). Pit latrines can 
be designed with a water seal (pour-flush pit latrine) or 
without a water seal (dry toilet) (46). When constructed 
and maintained correctly, pit latrines can reduce the 
transmission of illness by minimizing the amount of 
human waste released into the environment through open 
defecation (68). This reduces flies’ ability to spread viruses 
from dung to food (69). Regular emptying is required 
for the pits to stay functional and avoid overflows. The 
process of manually emptying pit latrines, which involves 
removing fecal sludge with implements like buckets and 
shovels and other is the most popular one (60) As shown 
in Figure 4, pit latrines consist of components like a pit 

or digester, superstructure, ventilation pipe, seat or squat 
plate, and cover material (63).

The working mechanism of a pit latrine involves a 
combination of decomposition and natural processes 
such as waste collection, decomposition, evaporation, 
filtration, filling, or emptying (70). As the pit fills up with 
waste or reaches its maximum capacity, it needs to be 
either emptied or closed off, and a new pit is constructed 
(65). It is important to note that proper maintenance 
and hygiene practices, such as regular pit emptying, 
avoiding groundwater contamination, and implementing 
safety precautions, play a crucial role in ensuring the 
effectiveness and safety of pit latrines (71).
Urine diverting dry toilet
New environmentally sustainable and financially feasible 
sanitation technologies, such as waterless systems with 
source separation of human waste, have been developed 
in response to the current environmental issues that 
the majority of middle- and low-income nations, like 
Ethiopia, have been experiencing (72). A toilet that diverts 
urine separates it from solid waste (73). The UDDT is 
designed so that feces fall through a sizable hole in the 
back of the toilet, while urine is collected and emptied 
from the front area (3). Following defecation, drying 
material such as lime, ash, or soil should be placed in 
the same hole, depending on the collection and storage/
treatment technology that will be used next (74). In urine-
diversion dry toilets, human waste can serve as beneficial 
soil conditioners.

A successful application in agriculture requires 
effective pathogen elimination with no adverse effects on 
vegetation (55). The toilet has a fan installed that removes 
moisture and air, rendering the toilet odorless in the area 
(75). Since there is no need for a drain, heated room, or 
water, a urine-diverting toilet operates in any setting (76). 
The solid waste is placed in compostable bio bags made 
of corn starch, which can later be composted, while the 
urine is discharged into a collection vessel or infiltrated 
(77). UDDT is a sustainable and innovative sanitation 
technology that provides an alternative solution to 
traditional flush toilets. As indicated in Figure 5 the 
UDDT aims to separate urine and feces to promote proper 
waste management and minimize water usage. The major 
components of a UDDT toilet include the toilet bowl, 
urine diverting system, solid waste container, ventilation 
pipe, and urine collection system (57) 

The working mechanism of UDDT includes usage, 
diversion, collection, solid waste decomposes, emptying, 
and maintenance (75). UDDT toilets offer several 
advantages, including water conservation, nutrient 
recycling, and improved sanitation in areas with limited 
access to water and centralized sewage systems. They 
contribute to sustainability by minimizing water usage 
and providing an eco-friendly approach to waste 
management. The primary facilitator of adoption is 
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the collection and reuse of human waste as fertilizer; 
however, this may be incompatible with existing beliefs 
(46). Providing continuing instruction on safe emptying 
or establishing an emptying/reuse service is critical 
to UDDT use success (62). Having enough ash or dry 
material enables the implementation of dry sanitation. 
UDDT propagators should concentrate on the economic, 
water, user experience, and health advantages at the home 
level (57). 

Composting toilet
A composting toilet is a form of dry toilet that uses 
the biological process of composting to treat human 
waste (64,78). A composting toilet operates through a 
combination of physical, biological, and chemical processes 
(79). While the primary focus is on the decomposition of 
organic waste, chemical reactions also play a significant 
role in breaking down waste and transforming materials 
within the composting toilet system (14). The primary 
chemical reaction that occurs in a composting toilet is 
called aerobic decomposition or aerobic digestion (80). 
This process involves the decomposition of organic 
materials in the presence of oxygen. When waste, such 
as human excreta is added to the composting toilet, 
aerobic bacteria, and other microorganisms begin to 
break down the organic matter (81). Microorganisms 
which are mainly bacteria, need oxygen to live and 
break down the waste (82). The organic substance is 
broken down into simpler chemicals as they ingest it and 
release enzymes. Additional chemical processes, such 
as oxidation and hydrolysis, result in the generation of 
carbon dioxide (CO2), water (H2O), and different leftover 
organic molecules from these components (83). In a 
process known as ammonification, bacteria transform 
ammonia into ammonium (NH4

 + ), a type of nitrogen 
that plants may use (84). The compost created can be 
used as fertilizer by this conversion, which also makes 
nutrient cycling easier. It is noteworthy that composting 
toilets may also utilize additives to aid in the composting 
process (85). These additives can include substances like 
sawdust, peat moss, or coconut, which help maintain the 
proper carbon-to-nitrogen ratio and provide additional 
sources of organic matter for the microorganisms (19). 
These additives may also contribute to chemical reactions 
by providing essential nutrients and creating an optimal 
environment for microbial activity (34). Overall, the 
chemical reactions in a composting toilet play a crucial 
role in the decomposition and transformation of organic 
waste into usable compost. The proper balance of oxygen, 
organic materials, and microorganisms allows for the 
efficient breakdown of waste and the production of 
nutrient-rich compost for gardening or other purposes 
(20). Human waste is converted into compost-like 
material during this process, which results in the 
decomposition of organic matter (86). Diet, activity, age, 

sex, social standing, and anal cleansing techniques all 
have an impact on the creation and chemical makeup of 
human feces compost. 3.0%-5.4% P2O5, 1.0%-2.5% K2O, 
and 4.8%–7% N make up feces. 15.0%–19.2% N, 2.5%–0% 
P2O5, and 3.0%–4.5% K2O are the main components of 
urine (11). Composting toilets are promoted as waterless 
systems for treating human waste that are suitable for 
use by the general population in remote areas. Most 
compost toilet constructors aim to enable human feces to 
decompose without depending on surrounding soils, and 
to ensure that the final products can be safely disposed 
of on-site without requiring additional treatment (82). 
According to research, microorganisms, mostly bacteria 
and fungi, carry out composting under carefully regulated 
aerobic conditions (87).

Figure 6 shows the key components of a composting 
toilet, which include the toilet bowl, ventilation system, 
composting chamber, separator, compost drainage 
system, and the working mechanisms of separation, 
decomposition, temperature and moisture control, and 
compost maturation (6,79) 

Factors affecting human feces composting 
Human feces composting is a process that involves 
the breakdown of organic matter into simpler forms 
through the activity of microorganisms (88,89). The 
ideal temperature for composting is in the range of 
40 to 60 oC, which promotes the growth of beneficial 
microorganisms and accelerates the breakdown of 
organic matter (5). Adequate moisture content is crucial 
for composting, with a balance of 25 to 30 being ideal 
(6,86). The composting process takes time, typically 
requiring several months to a year for it to mature fully 
(82). Regularly turning or aerating the compost every 
few weeks helps to mix materials, improve aeration, and 
accelerate decomposition. Proper composting is essential 
to ensure the destruction of pathogens present in human 
feces. This includes maintaining the compost pile at a 
temperature of at least 55 ℃ (131 ºF) for a minimum 
of three days (44). Time plays a significant role in feces 
composting, with decomposition resulting from the 
activity of microorganisms breaking down complex 
organic compounds into simpler forms (37). This 
decomposition is essential for the transformation of feces 
into nutrient-rich compost. Over an extended period, the 
nutrients present in feces become more readily available 
for plants, leading to the breakdown of organic matter into 
nutrient-rich compounds like nitrogen, phosphorus, and 
potassium (7). Stability and maturity are also important 
aspects of feces composting, with longer composting 
periods allowing the compost to reach a stable and mature 
state (90,91).

Incinerations toilet 
An incinerating toilet is a type of dry toilet that burns 
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human feces instead of flushing them away with water 
(92). 

Incinerating toilets are used only for niche applications, 
which include:
•	 Apartments with limited or difficult access to waste 

plumbing.
Houses without access to drains, and where building a 

septic tank would be difficult or uneconomic.
On canal barges, as an alternative to a blackwater 

holding tank, which needs to be pumped out occasionally.
On mobile homes, recreational vehicles, and caravans/

(trailers).
Incinerating toilets may be powered by electricity, gas, 

dried feces, or other energy sources (6). Incinerating 
toilets gather excrement in an integral ash pan, and then, 
incinerate it, reducing it to pathogen-free ash. Some will 
also incinerate “grey water” created from showers and 
sinks (93).

An incineration toilet, also known as a self-combusting 
toilet, is a modern and sanitary alternative to traditional 
toilets that uses a combustion process to dispose of human 
waste (58). It consists of several components that work 
together to efficiently and safely incinerate the waste like a 
toilet bowl, incinerator chamber, burner, exhaust system 
and working mechanism waste disposal, incineration 
cycle, initiation, combustion process, waste incineration, 
ventilation and odor control, ash collection, cleaning, and 
maintenance (94).

Uses of brown water (feces)
Fertilizer 
The use of human feces as fertilizer can increase agricultural 
productivity. Excreta from people makes for excellent 
organic fertilizer (63,65). They have a larger capacity for 
fertilizing than animal feces. The improvement of the 
organic and humus component of the soil, preservation 
of moisture and air regulation, and an increase in nutrient 
storage and release are all long-term advantages of 
using human waste (11). However, it is advised that the 
waste be processed at least once before being applied to 
the farm (22). Human excreta contains organic matter 
which, if applied to poor soils, can improve its biophysical 
characteristics such as water-retention capacity (11,52).

Mechanisms (procedures) of using feces as fertilizer will 
be collection, treatment, composting vermicomposting, 
and maturation (9,73). Proper sanitation is crucial for 
the collection of human feces, also known as “night soil,” 
to prevent contamination and the spread of hazardous 
bacteria. Proper treatment of human waste eliminates 
pathogens and contaminants through methods such as 
composting, anaerobic digestion, and vermicomposting 
(using worms) (55). Composting involves combining 
feces with organic materials like straw, leaves, or 
wood chips, which must be managed and maintained 
at specific temperatures and moisture levels (20). 

Anaerobic digestion breaks down trash in an oxygen-
free environment, producing biogas (CH4 and CO2) as 
a by-product (95). The remaining sludge can be further 
composted or used as fertilizer. Vermicomposting utilizes 
earthworms to decompose waste, resulting in nutrient-
rich vermicompost that can be used as soil fertilizer. After 
treatment, the human waste undergoes a maturation phase 
to achieve complete pathogen destruction. The duration 
of the fertilization process varies, but it is recommended 
to last for several months to a year to eliminate harmful 
microorganisms and ensure safety. Feces can be matured 
and used as a nutrient-rich fertilizer in agriculture (79). 
Figure 7 shows that the safe use of human feces as fertilizer 
for plants ensures the mitigation of health risks, improved 
sanitation, and the adoption of appropriate technologies 
(95). Following local regulations for sanitary, sustainable 
practices, public acceptance, and awareness are crucial 
for successful implementation (83). Agricultural usage of 
sludge endangers nearby communities with its smell and 
may have negative health effects on farm workers (8). 

Production of biogas
The need for alternative sources of energy is being driven 
by the rising cost of fossil fuels and the dangers posed 
by environmental contamination (96). In particular, the 
creation of more HN3, which is a greenhouse gas due to 
its low C: N ratio, needs to be reduced through studies to 
produce biogas from human waste (97). It is possible to 
capture and utilize the methane gas produced by human 
waste to create biogas. According to the study by Adjama  
et al (98), biogas might be utilized to generate energy, heat 
water for domestic or commercial use, and cook food. This 
is done using a procedure that involves gathering methane 
in a confined, oxygen-free container (97). Organic stuff 
can decompose more easily at high temperatures. When 
biogas is burned with oxygen present, it reacts and releases 
energy (99). The process is presented in detail as follows. 

Collection and pre-treatment: Human feces are 
collected and undergo pre-treatment, which may include 
the removal of large solids, such as toilet paper, to ensure 
a more efficient digestion process. For fertilizer to be 
safe and effective, human excrement must be collected 
and pre-treated properly(55,100). This includes taking 
hygienic precautions to prevent the spread of pathogens 
and treating or composting the waste in a manner that 
reduces health risks (101).

Anaerobic digester: The feces are then fed into an 
anaerobic digester, a sealed container where digestion 
occurs. The digester can be either a batch or continuous 
flow system (102). Anaerobic digesters are devices that 
break down organic materials, such as human waste, in 
the absence of oxygen. These systems utilize specialist 
bacteria to break down complex molecules found in 
human excrement into simpler materials such as methane 
gas and organic fertilizer (103). To ensure optimal 
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conditions, the procedure requires careful monitoring 
of the temperature, pH levels, and retention duration. 
The design of the digester and the properties of the input 
material can affect the duration of the process (20). 

Bacterial activity: Inside the digester, anaerobic bacteria 
break down the organic matter found in the feces. These 
bacteria convert complex organic compounds, such as 
carbohydrates, fats, and proteins, into simpler compounds 
(27). Anaerobic digesters break down organic matter, 
including human feces, in an oxygen-free environment 
using specialized bacteria. These bacteria convert complex 
compounds into simpler substances, such as methane 
gas and organic fertilizer. The process requires careful 
monitoring of temperature, pH levels, and retention time 
(89). Anaerobic digestion can generate biogas for energy 
production and nutrient-rich fertilizer for agriculture. 
However, it is crucial to adhere to proper safety protocols 
and local regulations for the sake of public health and 
environmental protection (104).

Biogas production: Bacterial activity results in the 
production of biogas. Biogas is primarily composed of 
methane (CH4) and carbon dioxide (CO2), along with 
small amounts of other gases, such as hydrogen sulfide 
(H2S) and trace elements(105,106). Anaerobic digestion is 
a process where human feces is broken down by bacteria in 
an oxygen-free environment, producing biogas primarily 
composed of methane and carbon dioxide (7). This 
process involves collecting fecal matter and introducing 
it into a sealed digester, where bacteria grow and produce 
biogas. Monitoring factors like temperature, pH, and 
retention time are crucial for safety. Biogas production 
can contribute to sustainable energy production and 
waste management (5).

Storage and utilization: The biogas produced can be 
stored and utilized for various applications. It can be 
utilized as a source of renewable energy for cooking, 
heating, or even electricity generation. The remaining 
materials after digestion, known as digestates, can be used 
as fertilizer because of their nutrient-rich composition 
(55). Excrement can be stored in anaerobic digesters and 
biogas plants, which create an oxygen-free environment 
for microorganisms to decompose organic materials and 
generate biogas. This biogas can be used as a renewable 
energy source to generate electricity, provide heat, and 
for cooking (55). Pre-treatment steps include removing 
non-biodegradable materials and adjusting the levels of 
moisture and nutrients to enhance the process. Biogas 
can be used for heating or cooking, or it can be converted 
into energy using biogas generators. The digestate can 
also be utilized as a nutrient-rich agricultural fertilizer. 
Respecting local laws is essential for environmental 
compliance and safety (54,57)

Biogas production from human feces is influenced 
by factors such as temperature, pH, retention time, 
and feedstock composition. It contributes to waste 

management by reducing the volume of fecal sludge and 
harnessing renewable energy resources. Figure 8 shows 
the components of the biogas chamber and parts.

As a renewable energy source, biogas offers numerous 
benefits, such as reducing deforestation for energy 
production and minimizing environmental pollution 
(99,107,108). By capturing methane that would have 
otherwise been released into the atmosphere, biogas helps 
to mitigate environmental impacts (4).

Conclusion
In conclusion, the implementation of dry toilets and 
effective feces management in Ethiopia and other 
developing countries offers numerous benefits. These 
include promoting sustainable sanitation practices, 
decreasing water usage, and generating valuable compost 
for use in agriculture, environmental conservation, 
and energy production. Ultimately, these measures 
improve hygiene, enhance food security, and stimulate 
economic development. Nevertheless, it is crucial to 
address existing challenges. Addressing these issues 
will require a comprehensive approach that includes 
education and awareness campaigns, investments in 
sanitation infrastructure and technology, improved waste 
management techniques, and community engagement. 
This review aimed to gain an understanding of dry toilets 
and feces management by promoting methods that can be 
used for sanitation and processing feces (brown water), 
which can be utilized as fertilizer and biogas through 
composting and preparation. There are several types of 
dry toilets with different designs for managing human 
feces, but toilets that can separate feces and urine, such 
as composting toilets and urine-diverting toilets, are the 
most suitable for utilizing excrement as fertilizer and 
increasing output. In impoverished nations like Ethiopia, 
various methods have been developed to manage human 
waste. However, society’s perception of using excrement 
for various purposes is extremely negative. Implementing 
pilot projects such as urine-diversion toilets and 
composting toilets was beneficial for training purposes. 
This study on brown water literature aimed to raise 
awareness and establish a comprehensive understanding 
of the management and utilization of brown water in 
various toilet systems and urban and rural sanitation 
technologies. The overall purpose of the review was to 
analyze existing information on brown water and identify 
knowledge gaps related to feces management, toilet 
selection, challenges caused by uncontrolled brown water, 
and societal perspectives on excrement management 
and utilization. In Ethiopia, dry toilet systems and feces 
management play a crucial role in ensuring proper 
sanitation and reducing the spread of diseases.
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