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Introduction
Air pollution remains a global environmental concern, 
particularly in India and other developing countries (1). 
India is one of the most polluted nations worldwide, with 
numerous cities facing environmental challenges due to 
increased air pollutant concentrations (2). Several Indian 
cities have reported exceeding levels of air pollutants, 
including respirable suspended particulate matter, 
carbon monoxide (CO), ozone (O3), sulfur dioxide (SO2), 
suspended particulate matter, and nitrogen dioxide 
(3,4). These pollutants can have serious consequences on 
human health, leading to breathing problems, headaches, 
dizziness, type 2 diabetes, and even heart problems (5-7). 
In recent studies on outdoor air pollution, the primary 
attention has focused on PM-related air pollution, 
particularly particles with a diameter of less than 2.5 
µm, which can penetrate lung tissue and cause both local 
and systemic effects (8-11). The primary pollutants that 

impact human health include PM 2.5, PM10, CO, SO2, O3, 
and nitrogen oxides (NO X) (12). Apart from affecting 
human health, these pollutants also can contribute to 
global warming through the greenhouse effect and lead to 
losses in ecosystems.

In India, air pollution has had devastating effects, 
causing approximately 1.24 million deaths (13). The 
population is significantly affected by various diseases 
and health conditions due to air pollution. The effect 
of air pollution is associated with chronic obstructive 
pulmonary disease, as well as symptoms such as coughing, 
breathlessness, wheezing, asthma, respiratory illness, 
and elevated hospitalization rates. These immediate 
health impacts, however, are interconnected with the 
prolonged consequences of air pollution, which involve 
cardiovascular diseases, chronic asthma, cardiovascular 
mortality, and pulmonary insufficiency. Furthermore, 
air pollution appears to inflict diverse harmful health 
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Abstract
Background: The ongoing advancements in modern society have negatively impacted air quality, and 
India is one of the worst affected countries. This study aimed to evaluate the efficiency of maintaining 
air quality in 10 major Indian cities.
Methods: The present study employed a directional distance function (DDF) within the framework of 
data envelopment analysis (DEA) to evaluate the efficiency of 10 major cities including Chennai, Delhi, 
Bengaluru, Ahmedabad, Hyderabad, Jaipur, Lucknow, Patna, Gurugram, and Thiruvananthapuram 
from January 01, 2018 to December 31, 2019. 
Results: The results indicate that air pollution is a significant issue in most cities in India. 
Thiruvananthapuram, Bengaluru, and Chennai were identified as the most efficient cities in terms of 
air quality for both 2018 and 2019 whereas Ahmedabad was noted as a purely inefficient city during 
the same period. Moreover, it was revealed that cities in the northern (Delhi, Lucknow, Patna), western 
(Ahmedabad), and northwestern (Jaipur, Gurugram) parts of India had higher levels of air pollution 
compared to the southern (Chennai, Bengaluru, Hyderabad, Thiruvananthapuram) part of India.
Conclusion: There are significant disparities in air quality efficiency among the cities, revealing 
that southern cities perform better than their northern, western, and northwestern counterparts. It 
emphasizes the need for targeted interventions to improve air quality, particularly in cities like Delhi, 
Ahmedabad, and Jaipur. 
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impacts during early human life, such as respiratory 
disorders, asthma, and mental health issues, leading to 
infant mortality or the development of chronic diseases 
in adulthood (14-18). The severity of air pollution in 
India is evident as six Indian cities were designated by 
the WHO among the top 10 most polluted cities in the 
world (19). Among these cities, Delhi ranked first with 
the highest levels of PM10 pollutants (20). According to 
the report of the Yale environmental performance index 
(EPI) in 2020, the air pollution levels in India are severe. 
The urban population, in particular, is mostly affected 
by the rising pollutant levels, primarily due to increased 
vehicular and industrial emissions (21-24). Major cities 
have reported significant quantities of harmful pollutants, 
including particulate matter PM2.5 and PM10, as well 
as gaseous pollutants such as CO, NO X, SO2, O3, and 
other volatile organic compounds like ethylene glycol, 
benzene, toluene, methylene chloride, formaldehyde, 
xylene, tetrachloroethylene, etc. With the projected urban 
population expected to exceed 66% by 2050 (25), the threat 
of increased air pollutants affecting a large population is 
a serious concern. This complex situation of air pollution 
has a significant impact on human health, emphasizing 
the urgent need for a comprehensive solution to sustain 
air quality levels in India. Hence, monitoring air quality is 
crucial for managing and regulating pollution levels (26).

The air quality index (AQI) is a daily air quality 
measurement that evaluates the health hazards 
associated with the air that we breathe by combining 
the concentrations of various pollutants into a single 
numerical form (27). The maximum of all sub-index 
values calculated for air pollutants is the final value of the 
AQI (28). Based on the impact of air quality on human 
health, the Central Pollution Control Board (CPCB) sets 
guidelines for national ambient air quality standards and 
classifies the air quality into six levels, as shown in Table 1. 

The AQI is determined in real-time by integrating air 
pollutants, and its score assesses the level of detrimental 
effects (29). It serves as a descriptive system to convey 
potential health risks and raise public awareness, especially 
among vulnerable populations. Maintaining healthy 
outdoor air quality requires continuous monitoring and 
effective sharing of real-time data. Ground-level pollution 
directly affects human health, while pollution in the 
vertical air column allows for assessing its distribution 
and environmental impacts (30). In India, the CPCB 
is mandated by the Air (Prevention and Control of 
Pollution) Act of 1981 to conduct regulatory monitoring 
of air quality. The National Air Quality Monitoring 
Programme (NAMP), managed by the CPCB, monitors 
major contaminants in 703 air quality stations across 
307 cities and towns. Continuous Automatic Air Quality 
Monitoring Stations (CAAQMS) measure pollutants 
throughout the year. Improving air quality in each city 
depends on their current performance level and requires 
a scientific process (31). For instance, a “Good” and a 
“Severe” day have a more harmful effect on one’s health 
compared to two “Poor” days. As the AQI score raises, 
various types of detrimental effects of air pollution 
increase. Therefore, measuring daily occurrences of 
different AQI levels is more significant than estimating 
long-term averages.

While previous studies have highlighted the severity of 
air pollution and its detrimental effects on human health, 
there is a lack of comprehensive assessments to evaluate 
the relative pollution levels of different cities in India. 
Therefore, this study aimed to fill this research gap by 
using a data envelopment analysis (DEA) model to assess 
the air quality of the cities and rank the cities in terms of 
relative efficiency in maintaining air quality. By doing so, 
it will contribute to the existing literature by offering a 
scientific approach to evaluate environmental efficiency 
and enable policymakers to make informed decisions 
for sustainable air quality management. Existing studies 
have employed various approaches to measure air quality 
and its management (32-34). However, this study shows 
an innovative application of the directional distance 
functions (DDF) to comprehensively evaluate air quality 
efficiency across major Indian cities. While DDF has been 
utilized in other contexts, this is the first study that applied 
it to air quality analysis in Indian urban centers over an 
extended period. This novel approach allows for a more 
nuanced assessment that simultaneously considers both 
desirable and undesirable air quality outcomes, providing 
unique insights beyond traditional air quality metrics.

Materials and Methods
Data envelopment analysis
DEA is a non-parametric technique for determining 
the efficiency of decision-making units (DMUs) by 
considering multiple inputs and multiple outputs (35). 

Table 1. Six levels of air quality index (AQI) in India

Air quality
Air quality 

index 
(AQI)

Associate health impacts

Good 0 – 50 Minimal impact.

Satisfactory 51 – 100 It causes slight breathing discomfort for 
sensitive individuals.

Moderate 101 - 200

It causes respiratory problems for those with 
lung conditions such as asthma and unease 
for individuals with cardiac issues, the 
elderly, and children.

Poor 201 -300
It causes respiratory discomfort for 
individuals with heart problems, especially 
with extended exposure.

Very poor 301 - 400
It causes respiratory issues with prolonged 
exposure, with a greater impact on people 
who already have lung or heart conditions.

Severe  > 401

It causes respiratory problems in individuals 
with good health, along with significant 
health consequences for those with lung 
or heart problems. However, light physical 
activity may be harmful to one's health.
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Efficiency is determined as the ratio of linearly combined 
outputs to linearly combined inputs, considering their 
respective weights. Charnes et al (35) proposed the 
Charnes, Copper, and Rhodes (CCR) model, which 
exhibits constant returns to scale. Banker et al (36) 
modified the CCR model and introduced the BCC model, 
which allows variable returns to scale. Numerous articles 
and reports on the utilization of DEA in various sectors, 
such as transportation, banking, education, agriculture, 
and other areas have been examined in recent years. 
An inefficient DMU in DEA models can become more 
efficient by either increasing the output levels or reducing 
the input levels. However, both desirable and undesirable 
outputs may exist in real-life situations. 

Within the realm of product development, it is 
imperative to acknowledge the potential of observations in 
yielding desirable products in line with market demands. 
Concurrently, these observations may lead to unintended 
consequences in the form of byproducts, some of which 
may be undesirable or even harmful, particularly when 
considering their environmental implications, such as 
the generation of environmental pollutants or hazardous 
waste. The adverse nature of these outcomes renders it 
challenging to accurately gauge efficiency, as conventional 
DEA models, like the standard DDF model, are tailored 
to evaluate systems with desirable outputs exclusively. 
Such standard models fail to consider the asymmetry 
between the two types of production, resulting in a biased 
estimation of efficiency, thereby leading to inaccurate 
recommendations for enhancement. While many studies 
resort to employing the inverse of undesirable outputs 
to transform them into positive values aligning with 
the production function, only few studies recognize the 
inherent biases within ratio variables. In endeavors aimed 
at estimating air quality efficiency, the objective is to 
increase desirable outputs and decrease undesirable ones 
using same inputs. In the study conducted by Álvarez 
et al (37) undesirable DEA-DDF model was used to 
assess environmental efficiency. As, Chambers et al (38) 
introduced a measure of efficiency by utilizing a distance 
function, which involves projecting the input-output 
units (xo, yo), where xo = (x1o, x2o, ..., xmo) and yo = (y1o, y2o, ..., 
yso) onto a pre-determined direction ( )g g ,g 0x y m s

− +
+= − ≠

, g m
x
− ∈  and g s

y
+ ∈ , in the direction β within the 

production possibility set:

PPS = ( ){ , , , 0}x y x X y Yλ λ λ≥ ≤ ≥

The related linear program is:

,  
max CRSβ λ

β

Subject to 

o xX x gλ β −≤ −

o yY y gλ β +≥ +
n

j 1
1jλ= =∑

0λ ≥

To evaluate the environmental efficiency of a DEA model 
while integrating undesirable outputs, a redefinition of 
the production function and the utilization of models that 
distinguish between the two types of output is required. 
Subsequently, the redefined production possibility set 
(PPS) is formulated as follows:

PPS = {( , , ) , , , 0}d u d ux y y x X y Y y Yλ λ λ λ≥ ≤ = ≥

Where the outputs  sy +∈ are divided into desirable 
and undesirable components, denoted as y = (yd, yu) with  

d qy ∈ and u ry +∈ . Therefore, the observation of 
directional efficiency measure (xo, yo

d, yo
u) is aligned with 

the pre-assigned direction corresponding to the output 
vector ( )g , 0d u

y m sy y += ≠ , which correlates with the 
solution of the program:

,  
max CRSβ λ

β

Subject to

oX xλ ≤

 d d d
o oY y yλ β≥ +

u u u
o oY y yλ β≤ −

max { } u u u
i o oy y yβ≥ −

0λ ≥

The optimal solution corresponds to *
CRSβ , and 

if * 0CRSβ = , with 
o 1λ = , ( )j 0 j 0λ = ≠ , indicating 

that the observation is environmentally efficient. 
Otherwise, *  0CRSβ > , indicating that the observation is 
environmentally inefficient.

Data collection and variables
To examine the environmental performance, this 
study used daily air quality data from the major cities 
in India from 2018 to 2019. These cities include Delhi 
(DEL), Gurugram (GUR), Bengaluru (BEN), Chennai 
(CHE), Hyderabad (HYD), Patna (PAT), Jaipur 
(JAI), Ahmedabad (AHM), Lucknow (LUC), and 
Thiruvananthapuram (THI). The daily AQI values of air 
pollutants, including NO, NO2, PM2.5, PM10, SO2, O3, NOx, 
CO, NH3, and BTX (benzene, toluene, xylene), are used 
in this study to evaluate the performance of the cities. 
The outputs utilized in this analysis are shown in Table 2, 
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wherein the number of ‘good’ and ‘satisfactory’ air quality 
days are taken as desirable outputs, while the number of 
‘moderate,’ ‘poor,’ ‘very poor,’ and ‘severe’ air quality days 
are taken as undesirable outputs. All data are collected 
from the CPCB of India.

Results 
Performance of cities in 2018 and 2019
Using the above methodology, this study evaluated the 
efficiency scores of 10 major cities in India from 2018 
to 2019. Based on the efficiency scores, this study also 
evaluated the average efficiency and suggested a ranking 
order to improve the performance of cities. The DEA 
technique measures the efficiency of the DMUs in the 
range [0, 1]. To calculate the environmental performance 

of undesirable outputs, MATLAB R2023b was used. This 
study evaluated the efficiency of cities based on the DDF 
model by simultaneously expanding desirable outputs 
and contracting undesirable outputs, while keeping all 
inputs the same. Hence, if the efficiency value is 0, the 
city is considered efficient; otherwise, it is considered 
inefficient. Firstly, the concentrations of different AQI 
levels observed over two years were examined, as shown 
in Figure 1.

Figure 1 shows the general air quality for all cities in 2018 
and 2019, where the proportion of days with moderate air 
quality is higher than the other AQI levels in both years. 
In 2018, only 2% of the days had good air quality, and 
the remaining 66% of the days had various degrees of 
pollution. By comparison, the percentage of days with 
a “good” AQI increased to 4% in 2019, signifying an 
improvement in air quality from 2018 to 2019, while the 
increase in the proportion is relatively small. Moreover, 
the percentage of days classified as “severe” in terms of 
air quality decreased from 11% in 2018 to 9% in 2019. In 
addition, this study assessed the air quality performance 
in India’s major cities by evaluating efficiency for 
different months in 2018 and 2019, as presented in 

Table 2. Variables used in this study

Outputs Variables

Desirable outputs Number of “good” air quality days
Number of “satisfactory” air quality days

Undesirable outputs

Number of “moderate” air quality days
Number of “poor” air quality days
Number of “very poor” air quality days
Number of “severe” air quality days

Figure 1. Air quality concentrations at different levels in 2018 and 2019

Figure 2. Monthly efficiency for all cities in 2018
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Figures 2 and 3, respectively. The summary statistics of 
the efficiency scores for 2018 and 2019 are presented in 
Table S1 and Table S2.

The efficiency scores highlighted in Figures 2 and 3 
show that there are significant variations in air quality 
between cities. A city is considered environmentally 
efficient if its efficiency score is zero. As shown in 
Figure 2, Bengaluru and Thiruvananthapuram emerged 
as the top-performing cities, achieving the best efficiency 
score in 7 out of 12 months. In contrast, Delhi, Jaipur, and 
Ahmedabad are the most polluted cities, with monthly 
efficiency scores exceeding 0.5. The efficiency score for 
each month in Ahmedabad and Delhi is 1, indicating 
that the cities are inefficient. Furthermore, in Figure 3, 
Thiruvananthapuram exhibited the best performance in 
2019, achieving the highest efficiency scores in 9 out of 
12 months. However, Delhi, Patna, and Ahmedabad are 
the most polluted cities, with efficiency scores exceeding 
0.5 every month in 2019, while Ahmedabad is the fully 
inefficient city, with the efficiency score of 1 each month. 
This finding is consistent with the finding of Shah and 
Patel (39) that Ahmedabad’s pollution levels exceed 

national standards, especially during the winter months. 
The AQI for all cities in various months of 2018 and 2019 
is illustrated in Figure 4. As the efficiency scores declined, 
the average air quality improved from January to July 2018 
and reached severe levels in February 2019. It improved 
again from July to September 2019, and showed poor air 
quality in December 2019.

Ranking order of cities 
Based on the efficiency scores, this study evaluated the 
average efficiency and ranking order for each city, as 
shown in Table 3, from 2018 to 2019. The results signify 
that the cities with the best air quality over the past 
two years were Chennai, Bengaluru, Hyderabad, and 
Thiruvananthapuram, while the most polluted cities were 
Delhi, Ahmedabad, Gurugram, Lucknow, Jaipur, and 
Patna. However, Krishnan et al (40) reveal that Chennai 
struggles with pollution management due to high PM2.5 
levels. There is a lot of gaps in certain cities where the 
air quality can be improved. For example, Jaipur could 
improve its air quality by 91.6% in 2018 and 70.5% in 
2019. The comparison of city rankings over the two-year 

Figure 3. Monthly efficiency for all cities in 2019

Figure 4. Monthly average AQI for all cities
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period is shown in Figure S1.
After calculating the average efficiency for each city, 

this study examined the detailed ranking order for both 
years. Initially, we compared the ranking generated by 
our model based on the average efficiency scores with 
those obtained by computing the average AQI value for 
each city in 2018 and 2019, as shown in Figures 5 and 6, 
respectively. The DDF-based DEA model employed in 
this study reveals that patterns and rankings obtained are 
different from those obtained using the average AQI. For 

instance, Chennai is ranked third in this study, but fourth 
when using the average AQI for both years. Similarly, 
in 2018, Bengaluru secured the first rank in this study, 
whereas it ranked second when using the average AQI. 
The summary statistics for the average efficiency and 
average AQI in 2018 and 2019 are presented in Table S3.

This study further evaluated the efficiency of all cities 
throughout the year, i.e. it calculated the efficiency for 
all 365 days of each city. By doing so, the cities with the 
best and worst air pollution every year were determined. 
The analysis indicates that Hyderabad, Bengaluru, and 
Thiruvananthapuram are the most efficient cities, while 
Ahmedabad was identified as a purely inefficient city in 
2018 and 2019, as shown in Table 4.

Based on the above results, there is a significant 
difference in the environmental performance of cities. 
For instance, the efficiency score of Chennai was 0.2123 
in 2018, which increased to 0.2453 in 2019. In most cities, 
the efficiency score exceeded 0.5, indicating the potential 
harmful effects of air pollution above this level. Some 
cities, such as Hyderabad and Thiruvananthapuram, 
were fully efficient during 2018 and 2019, while a city like 
Ahmedabad was fully inefficient. This study reveals that 
cities in the northern (Delhi, Lucknow, Patna), western 
(Ahmedabad), and northwestern (Jaipur, Gurugram) 
parts of India had higher air pollution than the southern 
(Chennai, Bengaluru, Hyderabad, Thiruvananthapuram) 
parts of India. This finding is supported by the thorough 
analysis and results detailed in the study by Sharma 
and Mauzerall (41). The higher levels of air pollution 
in the northern, western, and northwestern parts of 
India are due to the high population density, along with 
increased activities in industry, transportation, power 
generation, agricultural residue burning during specific 
seasons, and the occurrence of more frequent wind-
driven dust events, contributing to higher pollution levels 
compared to the southern parts of India (41). Based on 
the efficiency analysis, it was found that southern cities 
had better performance than the northern, western, and 
northwestern cities of India.

Table 3. Average efficiency and ranking of all cities in 2018 and 2019

City
2018 2019

Average 
efficiency Ranking Average 

efficiency Ranking

DEL 1 9 0.966 9

GUR 0.977 8 0.826 7

BEN 0.152 1 0.354 2

CHE 0.432 3 0.402 3

HYD 0.491 4 0.460 4

PAT 0.950 7 0.954 8

JAI 0.916 6 0.705 5

AHM 1 10 1 10

LUC 0.895 5 0.815 6

THI 0.158 2 0.016 1

Figure 5. Ranking comparison of all cities based on the average efficiency 
and average AQI in 2018

Figure 6. Ranking comparison of all cities based on the average efficiency 
and average AQI in 2019

Table 4. Overall efficiency scores obtained for all cities in 2018 and 2019

City Overall efficiency in 2018 Overall efficiency in 2019

DEL 0.8073 0.8759

GUR 0.7571 0.7738

BEN 0 0.2166

CHE 0.2123 0.2453

HYD 0 0

PAT 0.7624 0.8692

JAI 0.8568 0.8010

AHM 1 1

LUC 0.5944 0.7855

THI 0 0
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Discussion
The findings of the present study revealed substantial 
variations in air quality performance among major cities in 
India, offering crucial insights into the efficacy of pollution 
control measures and highlighting areas for targeted 
interventions. Firstly, our analysis of air quality data for 
2018 and 2019 underscores the persistent challenge of air 
pollution across the cities. Despite a marginal improvement 
in the proportion of days with “good” air quality in 2019 
compared to 2018, the prevalence of moderate to severe 
pollution levels remains a prevalent concern, with cities 
such as Delhi and Ahmedabad consistently experiencing 
high pollution levels throughout both years. Notably, 
our evaluation of city-level efficiency scores revealed 
distinct patterns in air quality management, with certain 
cities consistently outperforming others. Bengaluru 
and Thiruvananthapuram emerged as frontrunners 
in air quality efficiency, demonstrating superior 
performance across multiple months in both 2018 and 
2019. Conversely, cities like Delhi and Ahmedabad 
consistently lagged behind, exhibiting inefficiencies in 
pollution control efforts, as evidenced by consistently 
high monthly efficiency scores, indicative of inadequate 
pollution management practices. Furthermore, our 
study underscores the regional disparities in air quality, 
with cities in the northern, western, and northwestern 
regions experiencing an imbalanced distribution of 
pollution compared to the southern counterparts. This 
spatial variation underscores the complex interplay 
of geographical, meteorological, and anthropogenic 
factors influencing air quality dynamics in different 
regions. Importantly, our analysis extends beyond mere 
characterization of air quality to offer actionable insights 
for policymakers and urban planners. By computing 
average efficiency scores and deriving ranking orders 
for each city, our study provides a practical framework 
for prioritizing interventions and resource allocation to 
strengthen pollution control measures. The discrepancy 
between rankings based on average efficiency scores 
and those derived from conventional metrics like 
average AQI underscores the limitations of traditional 
assessment approaches and highlights the need for more 
nuanced, context-specific evaluation metrics. Moreover, 
our comprehensive assessment of city-level efficiency 
throughout the entire year unveils the temporal dynamics 
of air quality performance, revealing noticeable variations 
in pollution levels across different months. This detailed 
analysis not only enhances the understanding of pollution 
trends but also facilitates the identification of critical 
periods requiring targeted interventions. 

The disparities in air quality performance among 
Indian cities revealed by the present study underscore 
the complex nature of the air pollution challenge and 
the need for targeted policy interventions tailored to 
local contexts. While certain cities exhibit commendable 

efficiency in managing air quality, others deal with 
persistent pollution hotspots, necessitating a nuanced 
understanding of underlying drivers and barriers. For 
instance, the efficiency scores observed in cities like 
Bengaluru and Thiruvananthapuram underscore the 
effectiveness of localized pollution control measures and 
governance frameworks, which prioritize sustainable 
urban development and environmental conservation. 
Conversely, the consistently poor performance of cities 
like Delhi and Ahmedabad highlights the imperative 
need for comprehensive approaches to pollution 
management, encompassing regulatory reforms, 
technological innovations, and public participation 
initiatives. Moreover, the temporal dynamics of air quality 
fluctuations, as evidenced by monthly variations and year-
on-year trends, underscore the importance of adaptive 
governance strategies capable of addressing evolving 
pollution challenges. In conclusion, the present study 
contributes to the growing body of literature on urban 
air quality management in India by offering empirical 
evidence on the efficacy of pollution control measures 
and outlining strategies for promoting cleaner and 
healthier urban environments. The innovative approach 
used in this study offers several practical applications for 
policymakers and urban planners addressing air quality 
challenges:
1. Efficiency rankings can be used to identify best 

practices from best-performing cities that could be 
adapted to other urban areas.

2. Temporal analysis enables the implementation 
of targeted interventions during periods of lower 
efficiency.

3. Regional patterns revealed by this study can 
inform the development of coordinated air quality 
management strategies across neighboring cities.

These applications demonstrate how the novel insights 
gained from this study can directly contribute to solving 
air quality management problems in Indian cities.

Based on the results of this study, the following policy 
recommendations are suggested:

First, given the observed regional disparities in 
air quality, policymakers should prioritize inter-city 
collaboration and coordination to address sources of air 
pollution. Establishing regional air quality management 
frameworks and collaborative initiatives can facilitate 
information sharing, joint research efforts, and 
coordinated pollution control strategies across cities, 
thereby mitigating the transfer of air pollutants and 
fostering collective action toward improving air quality. 

Second, encouraging the adoption of sustainable 
transportation modes, such as public transit, cycling, and 
walking, is imperative for reducing vehicular emissions, 
a major contributor to urban air pollution. Policymakers 
should incentivize the use of electric vehicles, enhance 
public transportation infrastructure, implement 
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congestion pricing schemes, and promote non-motorized 
transport options to alleviate traffic congestion and 
curb emissions in urban centers. Additionally, investing 
in last-mile connectivity and promoting mixed land-
use development can further reduce reliance on 
private vehicles and promote eco-friendly commuting 
alternatives.

Third, strengthening emission standards for industries, 
power plants, and vehicular fleets is essential for curbing 
pollution at the source. Policymakers should enforce 
strict emission norms, incentivize the adoption of cleaner 
technologies, and implement robust monitoring and 
enforcement mechanisms to ensure compliance with 
regulatory standards. Additionally, promoting the use 
of cleaner fuels, such as compressed natural gas (CNG) 
and renewable energy sources can significantly reduce 
emissions and improve air quality in industrial and urban 
areas. 

Fourth, integrating green infrastructure and sustainable 
urban planning principles into city development 
frameworks can mitigate air pollution while enhancing 
urban resilience and livability. Policymakers should 
prioritize the preservation of green spaces, the creation 
of urban forests, and the implementation of green 
building standards to enhance air quality, mitigate heat 
island effects, and promote biodiversity. Furthermore, 
incorporating pedestrian-friendly designs, promoting 
mixed land-use patterns, and implementing measures 
to reduce urban expansion can optimize land use, 
minimize vehicular emissions, and create healthier urban 
environments. 

Fifth, effective public awareness campaigns and 
stakeholder engagement initiatives are vital for fostering a 
culture of environmental responsibility and encouraging 
collective action to mitigate air pollution. Policymakers 
should invest in education and outreach programs to 
raise awareness about the health impacts of air pollution, 
promote behavior change towards sustainable practices, 
and empower communities to participate in pollution 
monitoring and advocacy efforts actively. Additionally, 
fostering partnerships with civil society organizations, 
academia, and industry stakeholders can mobilize 
collective expertise and resources toward developing and 
implementing innovative pollution control solutions 
tailored to local contexts.

Conclusion
This research utilizes the DDF as a methodological 
framework to assess the air quality efficiency of 10 
prominent Indian urban centers from January 1, 2018 
to December 31, 2019. The investigation indicates that, 
within 2018, July demonstrated the most favorable air 
quality, whereas January exhibited the most suboptimal 
air quality performance. Also, during 2019, September 
was identified as the month with the highest air quality 

performance, while February was noted for its inferior 
air quality metrics. Furthermore, Thiruvananthapuram 
was reported as the city exhibiting the highest overall air 
quality performance with ranks 2 and 1 for 2018 and 2019, 
respectively, in contrast to Ahmedabad, which recorded 
the lowest performance and a rank of 10 in both 2018 and 
2019.

Additionally, the analysis discloses that urban areas 
located in the northern (Delhi, Lucknow, Patna), western 
(Ahmedabad), and northwestern (Jaipur, Gurugram) 
regions of India experience elevated levels of air pollution 
in comparison to those situated in the southern (Chennai, 
Bengaluru, Hyderabad, Thiruvananthapuram) region 
of the country. Moreover, a significant disparity in air 
pollution levels among the different cities is evident. 
Consequently, to enhance air quality across urban 
landscapes, it is necessary to optimize resource utilization 
and mitigate pollution emissions. The findings underscore 
the necessity for concentrated efforts to ameliorate 
air quality specifically in Delhi, Ahmedabad, Jaipur, 
Lucknow, Patna, and Gurugram. The results provide 
substantial insights that could serve as a valuable resource 
for policymakers, urban planners, and public health 
professionals, thereby aiding them in making informed 
decisions aimed at improving air pollution levels and 
overall public health in urban environments. The research 
can be extended by considering the spatial characteristics 
of the cities as these attributes significantly influence air 
quality outcomes.
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