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Introduction
Dementia is a pressing global health issue, with someone 
developing it every three seconds. The number of people 
affected is expected to surpass 55 million soon, reaching 
78 million by 2030 and 139 million by 2050, with most 
of the increase occurring in developing countries. This 
highlights the urgent need for global action to address 
dementia (1). The fastest rises in their elder populations 
are happening in China, India, and its neighbors in 
South Asia and the western Pacific area. In 2015, it was 
anticipated that dementia would cost $818 billion globally, 
or 1.09% of the world’s gross domestic product. By 2030, 
the annual expense of dementia is projected to increase 
to US$ 2.8 trillion from its current level of about US$ 1.3 
trillion (2) (Figure 1).

Alzheimer’s disease (AD) is a brain disorder that slowly 
impairs a person’s ability to think, recall things, and carry 
out even the most basic actions. The majority of patients 
with AD, 60%–70% of all cases worldwide, develop their 
first symptoms in their older years. It is a persistent, 

incapacitating, and developing disease (3). 
Dementia, especially AD, significantly affects 

individuals aged 65 and older, with AD being the majority 
of cases. Life expectancy post-diagnosis varies but can be 
4 to 8 years, with some living up to 20 years. By 2020, 
global dementia cases surpassed 50 million, highlighting 
concerns in public health and aging (4).

The situation is expected to worsen, with dementia 
cases projected to double every two decades, reaching 
152 million by 2050. Developing nations, currently 
home to 60% of patients, will see this rise to 71%. This 
shift highlights the urgent need to strengthen healthcare 
systems, prioritize research on prevention and treatment, 
and ensure culturally sensitive care. Global initiatives are 
crucial to enhancing healthcare and providing adequate 
support for those affected by dementia. Key regions 
affected include Asia, Latin America, and Africa, where 
aging populations and limited healthcare infrastructure 
exacerbate the problem. Asia alone is expected to 
experience a dramatic increase, with over 81 million 
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Abstract
Background: One of the brain anomalies that typically affects the elderly is Alzheimer’s disease (AD) 
and its frequency has greatly grown during the previous few decades. AD is affected by many genetics 
and environmental circumstances. Environmental factors and the quantity of air pollutants are two of 
the most significant elements influencing the prevalence of AD. 
Methods: In this study, information from articles on the effects of air and environmental pollutants 
on AD was utilized. Additionally, the role of machine learning in predicting diseases was examined. 
Results: Several studies, approached from various perspectives, have delved into the factors influencing 
the onset of AD. The development of machine learning techniques has made it possible to record 
information about the environmental conditions and people’s habitats to make possible the occurrence 
of dementia-related abnormalities. According to the reviewed studies, certain biological pollutants can 
significantly increase the likelihood of developing AD. Also, it indicated the use of this technique has 
been based on biological information recorded for various diseases. The results showed that unhealthy 
environmental conditions increase the odds ratio of AD several times. Therefore, using this information 
provides the possibility to prevent the occurrence of AD. 
Conclusion: In general, reliable information on the living conditions of the elderly, together with other 
information about AD, allows for the accurate forecast needed to avert the loss of social and personal 
capital. The future contribution of this knowledge is something we can envision.
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people living with dementia by 2050, especially in East, 
South, and Southeast Asia. Latin America and the 
Caribbean will also see substantial growth, with cases 
nearly quadrupling. Meanwhile, Sub-Saharan Africa and 
the Middle East are projected to face a surge in dementia 
cases as these regions age rapidly and face increased 
urbanization and lifestyle-related risk factors (2).

The World Alzheimer Reports conducted systematic 
investigations on global dementia prevalence until April 
2017. Estimations of dementia cases were derived from 
regional incidence rates by age and sex, besides UN 
population projections from 2015 to 2050. Research 
on AD focuses on understanding risk factors to reduce 
its incidence, although only a small fraction of cases 
are associated with specific gene mutations. Empirical 
evidence regarding environmental risk or protective 
factors for AD has been inconsistent (1).

Despite being the biggest risk factor for the disorder, 
age is not the main biological cause of AD. Furthermore, 
this disease affects people of all ages. Dementia affects 
young people in roughly 9% of instances up to age 65, 
according to research (5).

According to studies, factors such as physical activity, 
smoking, consuming alcohol, gaining weight, diet, blood 
pressure, cholesterol, and blood sugar all have a major 
impact on the development of AD. In addition, other 
factors affecting AD include depression, social isolation, 
education level, and air pollution (6).

Objective
The goal of this review study is to look into how different 
environmental factors influence the development of AD 
as well as how prediction and machine learning can help 
prevent it.

Criteria for selecting articles
In alignment with the research objectives, the selection 
criteria for the utilized articles were categorized into two 
distinctive groups: The first group focused on information 
sources exploring the impact of environmental factors at 
both the individual and cellular levels on the likelihood 
and probability of AD. This entailed investigating 
how exposure to air pollution may contribute to the 

development and progression of AD on a biological and 
molecular level. The second group centered on resources 
that delved into disease prediction algorithms. These 
sources were particularly valuable in understanding how 
algorithms designed for disease prediction, especially 
in the context of AD, could provide insights to mitigate 
early occurrences. The emphasis was on exploring the 
effectiveness of predictive models in identifying potential 
cases before symptomatic manifestation, thereby enabling 
preventive measures.

Materials and Methods
A comprehensive literature search was conducted to 
identify relevant studies on the role of environmental 
factors and machine learning techniques in predicting 
AD. The search spanned peer-reviewed journal articles, 
conference proceedings, and review papers published 
between 1990 and 2024. The databases used included 
PubMed, IEEE Xplore, Scopus, and Google Scholar. 
The following keywords and Boolean operators were 
employed in various combinations: Alzheimer’s disease 
prediction, environmental factors, machine learning, 
neurodegenerative diseases, predictive modeling, data 
mining, and risk factors for AD.

Inclusion criteria
To ensure relevance and quality, specific inclusion and 
exclusion criteria were applied: Studies that focus on 
using machine learning algorithms for predicting AD. 
Research examining environmental risk factors (e.g., air 
pollution, diet, lifestyle) and their association with AD. 
Papers that discuss the integration of machine learning 
with environmental or clinical data to enhance predictive 
accuracy. Articles published in English and peer-reviewed. 
Also, studies did not directly address AD or prediction 
models. Papers that do not involve environmental 
factors. Non-peer-reviewed literature, such as editorials, 
commentaries, and unpublished theses. Studies focused 
solely on genetic or purely clinical biomarkers unless 
environmental factors were also considered.

Relevant data were extracted from the selected studies, 
including the type of machine learning algorithms used 
(e.g., support vector machines, neural networks, random 
forests), environmental factors considered (e.g., air quality, 
diet, lifestyle), and the performance metrics reported (e.g., 
accuracy, precision, recall). The methods used in each 
study were critically evaluated based on their robustness, 
reproducibility, and contribution to understanding the 
prediction of AD. The review also identified common 
challenges across studies, such as the quality and 
availability of environmental data, the complexity of 
integrating multifactorial data into predictive models, and 
the limitations of current machine-learning approaches 
in healthcare applications.

This section outlines a rigorous and systematic 

Figure 1. By 2030, it is anticipated that the expense of dementia will 
increase to US$ 2.8 trillion (left), with a projected increase in the number 
of dementia sufferers (right)
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approach to reviewing the existing literature on the 
subject. By clearly specifying the search strategy, criteria, 
and methods of analysis, the review aims to provide a 
comprehensive and credible synthesis of the current state 
of research in predicting AD using environmental factors 
and machine learning.

Investigating cell damage and its role in Alzheimer’s 
disease 
According to Halliwell (7) and Migliore and Coppedè (8), 
reactive oxygen species (ROS), such as free radicals and 
their derivatives, lead to oxidative cell alterations. Although 
ROS are primarily produced by the mitochondrial 
electron transport chain, a variety of ROS are created 
throughout the body during normal metabolism at many 
cellular sites in healthy tissues (7,8). ROS are required for 
both the maintenance of tissue oxygen homeostasis and 
the removal of microbial intruders. They can, however, 
also affect the cell’s oxidative processes and change the 
structure of lipids, proteins, and nucleic acids to bring on 
or exacerbate associated with age symptoms (9).

Air pollution, especially from fine particulate matter 
(PM2.5) and nitrogen dioxide (NO2), has been shown to 
increase ROS production in the body. When inhaled, 
these pollutants can enter the bloodstream and cross the 
blood-brain barrier, where they promote the production 
of ROS in brain cells. This leads to oxidative stress, which 
triggers inflammation and damages cellular structures, 
including lipids, proteins, and DNA (10).

A study by Block and Calderón-Garcidueñas 
demonstrated that exposure to high levels of air pollution, 
particularly from traffic emissions, significantly 
increases oxidative stress in the brain. The elevated ROS 
levels contribute to the accumulation of beta-amyloid 
plaques, a hallmark of AD. This study emphasizes how 
environmental factors like air pollution can accelerate the 
pathophysiological processes associated with AD (11).

Research by Butterfield et al highlights that oxidative 
stress and ROS are among the earliest detectable 
changes in the brain associated with AD. This suggests 
that environmental factors, such as air pollution, which 
elevate ROS levels, may act as triggers or accelerators of 
the disease (12).

The level of stress caused by oxidation is determined 
by the balance between ROS creation and the antioxidant 
defense system. An oxidative stress state arises when the 
antioxidant defense mechanisms’ capacity is surpassed, 
leading to oxidative damage to macromolecules, also 
mitochondria, and other cell compartments (13,14). 
Oxidative stress might show up as lipid peroxidation, 
oxidation of proteins, or DNA oxidation depending on 
the macromolecules that ROS are targeting. The decline in 
cognitive function and motor skills in aging brains is due 
to an increase in free radical oxidation of lipids, proteins, 
and DNA (15,16). It has been established that tangles of 

neurofibrillary cells contain enhanced macromolecule 
oxidation and its byproducts. Along with their brains, 
AD patients’ peripheral tissues (such as blood cells) and 
biological fluids (like urine) have also been found to have 
markers of several types of oxidations (15).

The buildup of ROS is believed to encourage oncogenesis 
by altering redox-regulated signaling pathways. This 
suggests that the redox state is essential in processes such as 
signal transduction, cellular proliferation, differentiation, 
and apoptosis (17). Oxidative stress-induced damage has 
long been recognized as a factor in human diseases and 
a catalyst for tumor formation (18). For instance, long-
term cigarette smoking creates an intracellular oxidative 
environment that triggers a series of inflammatory 
responses, which are believed to enhance the carcinogenic 
process (19). Genotoxic carcinogens linked to prolonged 
tobacco inhalation cause various effects, such as the 
oxidation of glutathione, elevated oxidative DNA 
damage, and reduced levels of circulating antioxidants. If 
left unrepaired, these carcinogens can induce mutations, 
including the activation of proto-oncogenes (like 
K-Ras) or the inactivation of tumor suppressor genes. 
Additionally, ROS are known to promote chromosomal 
aberrations, the formation of DNA and protein adducts, 
and epigenetic modifications (20). Conversely, numerous 
compounds in urban air, originating from both natural 
sources (such as volcanic eruptions and dust storms) and 
man-made sources (including combustion for heating, 
power generation, and vehicle emissions), have been 
associated with carcinogenesis through ROS-mediated 
cellular toxicity. Air pollutants can directly affect various 
signaling pathways through their non-cellular properties 
(such as shape, size, and solubility) and/or cellular 
mechanisms that lead to ROS production and subsequent 
toxicity. Additionally, polycyclic aromatic hydrocarbons 
and volatile organic compounds (like benzene) can 
become metabolically active, leading to oxidative DNA 
damage (21,22).

Air pollution and Alzheimer’s disease
Air pollution, including ozone and particulate matter, 
poses significant health risks such as AD. Studies from 
2015 to 2022 show a relationship between air pollutants, 
particularly rising particulate matter levels, and AD risk. 
Monitoring and reducing air pollution are vital for public 
health, as highlighted by the 2019 State of Global Air 
Report. Despite progress, air pollution caused nearly five 
million deaths worldwide in 2017, with developing nations 
most affected (23,24). Further research and preventive 
measures are essential to mitigate its impact. Air 
pollution is widely recognized across various disciplines 
as a significant threat to human health. Originating from 
various sources like industry, transportation, and the 
burning of coal, fossil fuels, and biomass, it contributes 
to respiratory and cardiovascular illnesses, as well as 
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brain abnormalities. Pathological studies indicate that air 
pollutants such as PM, O3, NO2, SO2, and CO can lead to 
neurodegeneration and brain damage. These effects are 
mediated by control functions linked to oxidative stress, 
inflammatory conditions, and mitochondrial damage, all 
associated with the progression of AD (25,26). A selection 
of the results related to pollutants affecting dementia 
is presented in Table 1. As shown, higher levels of air 
pollutants significantly increase the risk of dementia and 
AD.

Toxic heavy metals and Alzheimer’s disease 
Table 2 summarizes studies that associate toxic heavy 
metals with dementia risk. Increased rates of dementia 
were observed in areas with higher soil arsenic levels, 
though this country-level analysis is less indicative of 
individual risk factors (34). A case-control study involving 
129 participants in each group found a higher incidence of 
Alzheimer’s dementia among individuals born in regions 
with above-average lead concentrations (35). Aluminum 
has been the most extensively studied metal concerning 
dementia, with several studies involving nearly 22 000 
dementia patients (36). A study revealed that consuming 
more than 0.1 mg of aluminum per day in drinking 
water doubled the risk of dementia and tripled the risk of 
Alzheimer’s dementia. Conversely, another study found 
that higher aluminum levels in soil had a protective effect 
(37).

Two case-control studies examined the relationship 
between copper and iron and dementia. The results for 
copper were inconclusive. However, both studies found 
that higher soil levels of iron were linked to an increased 
risk of dementia (35,37). A cross-sectional study reported 
that a higher proportion of individuals with Alzheimer’s 
dementia were born in areas with elevated levels of 
manganese (35). Conversely, another study found that 

higher zinc levels in the soil were associated with an 
increased risk of Alzheimer’s dementia (37).

The utilization of machine learning in forecasting 
dementia
Artificial intelligence (AI) has rapidly evolved from a 
theoretical concept to a transformative force, increasingly 
integrating into various fields and revolutionizing 
industries, with medicine standing out as a particularly 
promising domain for its applications and innovations 
(41).

John McCarthy coined the term “artificial intelligence” 
in 1956, envisioning machines replicating human 
behavior. Advancements in processing speed have 
integrated AI into daily life, notably in medicine, where 
it accelerates processes and enhances accuracy. Machine 
learning algorithms analyze medical data, aiding diagnosis 
and treatment. In the 1990s and early 2000s, automation 
improved specialized medical procedures, reducing 
errors and improving outcomes. These innovations mark 
a crucial moment in medical technology, augmenting 
healthcare professionals’ capabilities and enhancing 
patient care (42). 

Years of research into dementia, including the amyloid 
hypothesis, have provided valuable insights, yet a complete 
understanding remains elusive. Leveraging clinical 
data from electronic health records and conducting 
multi-omics research presents vast potential to explore 
AD biology (43). The wealth of data from thousands 
of AD patients exceeds the human capacity for full 
comprehension. Integrating clinical and biological data 
enables unprecedented insights into AD mechanisms, 
uncovering hidden patterns and associations. The rapid 
accumulation of data signifies significant progress in 
addressing AD. Cutting-edge techniques and vast data are 
pushing boundaries, potentially leading to breakthroughs 

Table 1. Attributes chosen to investigate the connections between air pollution and Alzheimer’s disease 

Author Year Title Output

Jung et al (27) 2015 Ozone, Particulate Matter, and Newly Diagnosed Alzheimer's 
Disease: A Population-Based Cohort Study in Taiwan

Increased HR of AD by 138% for every rise in PM2.5 of 4.34 µg/
m3, and increased HR of AD by 10.91 ppb for every increase 
in O3 over the follow-up period.

Li et al (28) 2012
Influence of PM2.5 exposure level on the association between 
Alzheimer’s disease and allergic rhinitis: A national population-
based cohort study

The OR (2.656-5.604) of AD patients rose when the particulate 
matter 2.5 exposure level increased.

Wu et al (29) 2015 Association between air pollutants and dementia risk in the 
elderly

The highest ( ≥ 49.23 μg/m3) vs. the lowest tertile of PM10: 
OR = 4.17; the highest ( ≥ 21.56 ppb) vs. the lowest tertile of 
ozone: OR = 2.00.

Oudin et al (30) 2016 Traffic-related air pollution and dementia incidence in Northern 
Sweden: A longitudinal study

HR (1.43, CI: 0.998, 2.05) AD was elevated as a result of air 
pollution.

Cerza et al (31) 2019 Long-term exposure to air pollution and hospitalization for 
dementia in the Rome longitudinal study

Exposure to O3, NOx, and PM2.5 was adversely linked with 
AD, while exposure to NOx, NO2, and PM10 was positively 
associated with dementia hospitalizations.

Carey et al (32) 2018 Are noise and air pollution related to the incidence of 
dementia? A cohort study in London Increased dementia risk due to NO2 > 41.5 µg/m3 (HR = 1.40).

Kioumourtzoglou 
et al (1) 2016 Long-term PM2.5 exposure and neurological hospital 

admissions in the northeastern United States
The HR of AD 1.15 increased with the amount of PM2.5 in the 
city.

Yuchi et al (33) 2020 Road proximity, air pollution, noise, green space and 
neurologic disease incidence: A population-based cohort study Road closeness was linked to outcomes in AD HR: 1.14

AD: Alzheimer’s disease; PM: Particulate matter; HR: Hazard ratio; CI: Confidence interval; OR: Odds ratio.



Environmental Health Engineering and Management Journal 2024, 11(4), 493-503 497

Mohammadi and Zarei

in diagnosis, treatment, and prevention (44).
Advanced AI-based models can successfully mine big 

data for relevant information, but as their complexity 
increases, it gets tougher to understand how they produce 
their results. Making AI comprehensible is a significant 
obstacle to current AI technological advancement, but it 
is essential for healthcare applications since patients and 
doctors need to have faith in research methodology to 
make decisions about people’s health (45).

The need for a precise individual diagnosis is 
reinforced by the AD pathology’s extreme complexity and 
heterogeneity, the lack of etiological consistency, and the 
vast variety of treatments that can be helpful for certain 
people. To maximize the efficiency and enhance the 
outcomes of biological investigations, complex biological 
simulation, based on mathematical and statistical 
methods like Artificial Neural Networks, must be utilized 
to support and monitor these studies (46).

Combining structured knowledge from psychology, 
neuroscience, neurology, psychiatry, geriatric medicine, 
biology, and genetics offers a holistic approach to AD 
research. Innovative analytical methods, including 
bioinformatics and statistics, are applied to large datasets 
to gain comprehensive insights into disease progression, 
identify patient subgroups, and discover biomarker 
combinations through predictive models. This approach 
can lead to the development of effective treatment 
strategies and personalized medical care for individual 

AD patients (47).
Artificial intelligence has brought about a substantial 

transformation in the assessment and utilization of digital 
data. Currently, AI is deployed across various applications 
to perform basic functions like recognizing faces or 
speech, often surpassing human capabilities in these 
domains. This presents an extraordinary opportunity, 
particularly in the field of medical treatment, where AI’s 
potential for swift, cost-effective, and precise automation, 
such as employing AI algorithms for the analysis of digital 
images, can be harnessed (48,49).

Machine learning enables computers to learn 
autonomously, making it valuable in disease detection 
and diagnosis with the vast amount of medical data 
available. It outperforms traditional statistical methods 
like logistic regression and Cox proportional hazard 
models, particularly with extensive datasets, overcoming 
challenges such as predictor independence assumptions 
and risks of overfitting and collinearity (50). This 
versatility allows varied data sources to be utilized in 
AD diagnosis, potentially leading to insightful results 
combined (51) (Figure 2).

Machine learning-based methods have been found 
in the last 10 years to be beneficial for AD diagnosis. 
Commonly used classification methods encompass 
support vector machines, artificial neural networks, 
gradient boosting techniques, random forest, K-nearest 
neighbor, and neural networks.

Table 2. The relationship between exposure to toxic heavy metals and the development of dementia

Author Year Title Output

Emard et al 
(35) 1994

Geographical distribution of Alzheimer's disease cases at 
birth and the geochemical profile of Saguenay-Lac-Saint-
Jean/Québec, Canada (image project)

Among individuals with AD, 15 were born in regions with below-
average lead concentrations, while 49 were born in areas with 
above-average lead concentrations.

Dani (34) 2010 Arsenic for the fool: An exponential connection Small increases in soil arsenic concentration were associated with 
exponential rises in dementia rates at the national level.

McLachlan et 
al (38) 1996

Risk for neuropathologically confirmed Alzheimer's 
disease and residual aluminum in municipal drinking water 
employing weighted residential histories

Aluminum levels exceeding 100 μg/L, as opposed to levels below 
100 μg/L, showed a higher likelihood of AD and dementia (OR, 1.7).

Vogt (39) 1986
Water quality and health: study of a possible relation 
between aluminum in drinking water and dementia 
(Pamphlet).

The zone with the highest aluminum concentration was linked to an 
elevated standardized dementia mortality rate compared to the zone 
with the lowest concentration (per 10 000 inhabitants per year: 48.3 
vs 32.4). This difference was more pronounced in women (59.4 vs 
38.5) than in men (36.9 vs 26.1).

Shen et al (37) 2014 Positive relationship between mortality from Alzheimer's 
disease and soil metal concentration in mainland China

After excluding three outlier provinces, there was a correlation 
between copper concentration and annual mortality from AD 
(correlation coefficient = 0.449, P = 0.021).

Shen et al (37) 2014 Positive relationship between mortality from Alzheimer's 
disease and soil metal concentration in mainland China

Elevated levels of iron in the soil were linked to higher mortality 
rates from AD (with a relative risk of 1.248 comparing the highest to 
the lowest group). Following the exclusion of three outlier provinces, 
there was a correlation between iron concentration and the annual 
mortality rate from AD (r = 0.537, P = 0.007).

Shen et al (37) 2014 Positive relationship between mortality from Alzheimer's 
disease and soil metal concentration in mainland China

Elevated zinc levels in the soil were linked to higher mortality rates 
from AD, with the highest group having a RR of 2.289 compared to 
the lowest group.

Gillette-
Guyonnet et 
al (40)

2005 Cognitive impairment and composition of drinking water in 
women: findings of the EPIDOS study

Consuming low levels of silica in water ( ≤ 4 mg/d) was linked to a 
higher risk of dementia, with a multivariable-adjusted OR of 2.74.

Rondeau et al 
(36) 2009

Aluminum and silica in drinking water and the risk of 
Alzheimer's disease or cognitive decline: findings from 15-
year follow-up of the PAQUID cohort

The highest quartile of silica concentration in drinking water 
compared to the lowest quartile was associated with an increased 
risk of dementia and AD.

AD: Alzheimer’s disease; RR: relative risk; OR: Odds ratio.
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The economic advantages of early detection of 
Alzheimer’s disease
The aging population presents challenges due to 
increased incidence of age-related illnesses, leading to 
rising healthcare and social support costs. Caring for 
the current 35 million dementia patients costs over $600 
billion annually, exceeding 1% of global GDP. As people 
age, they become more vulnerable to conditions like 
dementia, imposing significant burdens on healthcare 
systems and societies. These challenges require 
innovative approaches to healthcare delivery and cost 
management (52). Early diagnosis and quality care for 
the elderly, especially those with dementia, are essential 
not only morally but also economically. Strategies must 
be developed to alleviate financial strain on healthcare 
systems while ensuring adequate support for the aging 
population. Also, demonstrated AD is ranked third on 
the list of costly diseases for the American economy, after 
cancer and cardiovascular disease. Between $50 billion 
and $100 billion is projected to be spent annually on 
treating AD. Formal or direct costs include things like 
long-term care and medical appointments. Long-term 
care and lost productivity from family carers are examples 
of informal or indirect costs (4). AD patients who reside in 
the community have two main costs: their direct medical 
costs and the indirect cost of caregivers’ lost productivity. 
The predicted annual direct spending on healthcare might 
amount to $29.1 billion in 1998 currency. The annual cost 
per patient for lost productivity due to unpaid caregivers 
is estimated to be up to $47 000. 

In 2010, global dementia costs were projected at around 
$604 billion, with Western Europe and North America 
bearing about 70% of these expenses (53). In high-income 
regions, direct social care and informal caregiving costs 
were nearly equal, while in low- and middle-income 
countries, informal caregiving dominated expenses. 

Dementia poses significant financial burdens globally, 
disproportionately impacting different regions. Concerns 
arise over rising costs as diagnosis-to-treatment time 
decreases (54). The shift from informal to formal social 
care spending in lower-income countries is expected to 
continue, affecting future expenditures and long-term 
care affordability. Investing in research and utilizing 
machine learning for early diagnosis and care is crucial 
to manage future societal costs effectively, ensuring 
sustainable and efficient healthcare systems (55).

Identifying individuals predisposed to AD before its 
onset can lead to cost savings at family, community, 
and societal levels. The economic impact of brain aging 
is well-documented, highlighting the need for proactive 
approaches (56). Artificial intelligence and machine 
learning offer promising avenues for disease prevention 
across medical fields. Predicting AD occurrence is feasible 
through comprehensive data collection on personal, 
social, environmental, and genetic factors, coupled 
with machine learning algorithms. Early detection of 
diseases offers significant economic benefits by reducing 
healthcare costs, improving quality of life, and alleviating 
the burden on caregivers. Identifying conditions at 
an early stage often allows for more effective and less 
expensive treatments, avoiding the higher costs associated 
with advanced disease management and emergency care. 
This proactive approach not only enhances patients’ 
quality of life by enabling better disease management 
and maintaining their daily activities but also reduces 
the emotional and financial strain on caregivers. By 
minimizing the need for intensive care and prolonged 
support, early detection contributes to overall cost savings 
in the healthcare system and supports both patients and 
their families in managing their health more effectively 
(51).

Figure 2. Assessing the accuracy of machine learning models concerning the dataset size, taking into account the data modality (23)
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Discussion
Air pollution, responsible for 7 million annual deaths, 
is a major global environmental health risk, linked to 
climate change. Improving air quality has benefits for 
the environment, the economy, and public health. Both 
versions clarify that improving air quality has multiple 
positive impacts. Notably, air pollution, a significant 
risk factor for dementia, including AD, increases with 
exposure to harmful compounds like PM2.5. Research 
shows a clear correlation between PM2.5 exposure and 
dementia risk, with implications for AD prediction (54).

Research on the association between PM10 (particulate 
matter with a diameter of 10 μm or less) and AD yields 
varying and inconclusive results. PM10 concentrations 
in Rome and Taiwan during the assessment period were 
within the range of IT-2 (30 µg/m3) and IT-3 (50 µg/m3). 
Interestingly, AD risk increased in Taiwan but decreased 
in Rome (29). These divergent outcomes highlight 
the complexity of the PM10-AD risk relationship, 
suggesting the influence of regional factors and 
individual characteristics. Further research is necessary 
for a comprehensive understanding of these dynamics. 
Decades ago, research identified the fundamental factors 
underlying PM-induced neurodegenerative diseases (31). 

Emerging research suggests that environmental factors 
may significantly contribute to the risk and progression of 
AD. One important prediction is that prolonged exposure 
to air pollution, particularly fine particulate matter 
(PM2.5), may increase the incidence of AD. Studies have 
shown that pollutants can induce oxidative stress and 
inflammation in the brain, which are critical pathways 
in developing neurodegenerative diseases. Populations 
living in highly polluted urban areas are especially at risk, 
with predictions indicating a potential rise in AD cases as 
air quality continues to decline due to increased industrial 
activities, vehicular emissions, and other pollutants 
(57,58).

The potential connection between heavy metal exposure 
and AD has been a subject of investigation for decades. 
Metals such as lead, mercury, and aluminum have drawn 
attention due to their known neurotoxic effects, but 
the evidence linking them to AD is complex and often 
inconsistent. 

Lead exposure, particularly during early development, 
has been linked to cognitive decline later in life. 
Lead can accumulate in the brain and contribute to 
neurodegeneration by promoting oxidative stress and 
inflammation. A study by Cecil et al found that children 
with higher lead exposure had brain abnormalities linked 
to cognitive deficits, which could be precursors to dementia 
in adulthood (59). While some animal and human studies 
suggest a connection between lead exposure and AD, 
other studies have not found a significant association. 
The inconsistency arises due to variations in the timing 
and duration of exposure, differences in populations 

studied, and challenges in measuring long-term exposure 
accurately (60).

Mercury, particularly methylmercury, has been 
primarily introduced into the human body by consuming 
contaminated fish. Studies have shown that mercury can 
cross the blood-brain barrier and cause neurotoxicity, 
potentially contributing to Alzheimer’s pathology. A 
study by Mutter et al suggested that mercury exposure 
could lead to beta-amyloid plaque formation, a hallmark 
of AD (61). Despite these findings, other research has 
not consistently supported the mercury-AD relationship. 
Some population studies have failed to show a significant 
increase in AD risk among individuals with higher 
mercury exposure, possibly due to variations in diet, 
mercury levels, and individual susceptibility.

Aluminum has been investigated for its potential role 
in AD for decades. It can accumulate in brain tissue and 
has been found in the plaques and tangles characteristic 
of AD. Some studies, such as those conducted by Exley, 
suggest that high aluminum levels in drinking water 
or from occupational exposure could be linked to an 
increased risk of AD. However, the aluminum hypothesis 
remains controversial. Large-scale studies have not 
consistently demonstrated a clear causal relationship 
between aluminum exposure and AD. The complexity 
of Alzheimer’s etiology, involving multiple factors 
like genetics and lifestyle, makes it difficult to isolate 
aluminum as a significant contributor (62).

Machine learning is increasingly utilized to predict and 
understand the environmental factors contributing to 
AD. One significant prediction from ML models is the 
identification of complex interactions between air pollution 
and genetic predispositions that may increase AD risk. By 
analyzing vast datasets, including air quality indices and 
genetic information, ML algorithms can identify patterns 
and correlations that traditional statistical methods might 
miss. These models have predicted that individuals with 
certain genetic markers, such as the APOE ε4 allele, are 
more susceptible to the adverse effects of air pollution, 
particularly fine particulate matter (PM2.5). This insight 
suggests a compounded risk factor where genetics and 
environment intersect, underscoring the need for targeted 
interventions in high-risk populations (63,64).

Another critical prediction made by machine learning 
involves the impact of lifestyle factors modulated by 
environmental conditions on AD progression. For 
example, ML models have shown that exposure to 
pesticides and heavy metals, combined with factors like 
diet and physical activity, can significantly influence 
the onset and severity of AD. By integrating data from 
various sources, such as environmental exposure records, 
healthcare databases, and personal health trackers, ML 
algorithms can forecast AD progression with higher 
accuracy. These predictions highlight the importance 
of holistic approaches to AD prevention, incorporating 
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environmental regulations and personalized healthcare 
strategies to mitigate the risk factors identified through 
machine learning analyses (65,66).

Machine learning algorithms have revolutionized our 
ability to predict and comprehend complex diseases like 
AD. Their success in predicting AD occurrence marks 
a major advance in early diagnosis and intervention, 
potentially altering the disease’s trajectory. These 
algorithms analyze extensive datasets containing genetic 
markers, neuroimaging, cognitive assessments, and 
environmental factors (67). Integrating diverse data points 
provides a comprehensive understanding, capturing 
subtle nuances beyond traditional diagnostic methods.

Moreover, Machine learning algorithms advance 
personalized medicine by tailoring predictions 
to individual risk profiles, incorporating genetic 
predispositions, lifestyle factors, and other variables 
(66). This nuanced approach fosters precise and targeted 
prediction models, marking a shift from one-size-fits-all 
healthcare strategies. Machine learning plays a pivotal 
role in transforming AD prediction towards personalized 
approaches. Machine learning in AD prediction faces 
challenges like ethical concerns, data privacy, and 
algorithm interpretability (68). Yet, the potential 
benefits, such as improved diagnostic accuracy and early 
intervention, drive ongoing research. Brain imaging 
modalities like MRI and PET scans offer valuable insights 
into brain alterations. Sophisticated algorithms analyze 
these images, revealing subtle indicators of Alzheimer’s 
pathology, aiding early detection and understanding of 
disease mechanisms (69).

The research findings have significant implications for 
proactive and personalized healthcare. Accurate prediction 
of AD onset allows for timely intervention, potentially 
altering the disease’s course. High accuracy and recall 
rates achieved by various algorithms demonstrate their 
effectiveness in detecting subtle patterns indicating AD 
risk (70). These studies also advance our understanding 
of AD complexities by integrating advanced algorithms 
with large-scale brain imaging datasets. This deeper 
comprehension is crucial for developing targeted 
therapeutic approaches and refining treatment methods. 
The study combined a genetic algorithm with a support 
vector machine to classify different types of AD (33). 
This integrated approach demonstrated impressive 
performance metrics: a precision of 93.01%, indicating 
accurate identification of AD cases; a recall rate of 89.13%, 
showing sensitivity in capturing positive instances; and a 
feature detection rate of 96.80%, highlighting effectiveness 
in identifying relevant disease characteristics (70).

Using machine algorithms to analyze air pollution 
data for predicting AD is highly valuable. While 
existing studies have used biological and MRI data 
for early detection, there’s a lack of research on using 
environmental data. Heavy air particles are directly linked 

to AD risk, emphasizing the importance of incorporating 
such environmental factors into predictive models (71).

The data on COX-2 expression and Aβ42 buildup offer 
the potential for predicting AD before its onset, enabling 
tailored solutions, particularly by government bodies. 
Early diagnosis is crucial since AD cannot be cured, but 
early intervention may prevent its progression. Utilizing 
environmental data and predictive analytics beforehand 
could potentially prevent the disease, significantly 
enhancing its value (1,72).

Looking ahead, it is crucial to continue advancing 
research and investing in early detection technologies 
to realize their potential benefits fully. For instance, the 
development of advanced screening methods for diseases 
such as cancer or AD, such as liquid biopsies or digital 
biomarkers, could significantly enhance early detection 
capabilities. Future research should focus on improving 
the accuracy and accessibility of these technologies, 
exploring new biomarkers, and developing more 
sophisticated diagnostic tools that can detect diseases at 
their most treatable stages. Investment in these areas will 
enhance the effectiveness of early detection and ensure that 
these innovations are widely available, thereby reducing 
healthcare costs and improving patient outcomes. 
Additionally, integrating early detection technologies into 
routine medical practices and public health strategies will 
help maximize their impact. By prioritizing these efforts, 
we can further reduce the burden on healthcare systems 
and caregivers, ultimately leading to healthier populations 
and more efficient use of healthcare resources.

Conclusion
Incorporating environmental information into machine 
learning models is crucial for forecasting AD in its early 
stages. Early prediction and intervention can significantly 
alter the disease trajectory, providing opportunities 
for more effective management and improved quality 
of life. Environmental factors, such as exposure to 
air pollution, heavy metals, and pesticides, have been 
increasingly recognized as contributing factors to the 
risk and progression of AD. By integrating data on these 
environmental exposures with other health information, 
machine learning models can enhance the accuracy of 
early AD prediction.
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