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Introduction
Plastic is a vital material in modern life, but it also poses 
one of the biggest challenges for humanity in this century 
(1). In 2015, the world produced 4.9 billion tons of plastic 
waste, and this amount is expected to reach 12 billion tons 
annually in 2050 (2). Microplastic particles (MPs) are small 
pieces of plastic that are less than 5 mm in size (3) and come 
from two main sources (4,5). The first source is primary 
MPs, which are mainly used in medical and cosmetic 
products, including polystyrene (PS), polyethylene (PE), 
and polypropylene (PP) particles (5). The next source is 
secondary MPs, which are created from the crushing of 
larger plastics due to chemical, biological, and physical 
processes (6,7). MPs can have diverse shapes, such as fibers, 
fragments, foams, rods, and flakes (8), with fibers being 
the most common type (9). MPs are found everywhere: 
in the air, wastewater treatment plants, landfills, lakes, 
oceans, rivers, sediments, and estuaries (10,11). The 
exposure and health effects of MPs in solid waste are 
less well understood than those in marine environments, 

although municipal solid waste is an important source 
of MPs in the environment. Landfills, one of the most 
common methods of solid waste management, can be a 
significant source of MPs (12,13). Several factors, such as 
rain and wind, can transport MPs from landfills to nearby 
environments (14). Moreover, since plastics are widely 
used in food production factories, if municipal solid waste 
is not managed correctly, it can be expected that this 
pollutant will be seen in various foods (15,16). MPs are 
a growing concern in aquatic environments because they 
can harm living organisms, and they can also accumulate 
and magnify in the food chain. MPs cause disturbances in 
the reproduction and feeding systems of aquatic animals 
(17). They also release harmful substances, additives, 
and monomers that can cause cancer (18). Moreover, 
exposure to MPs can lead to damage to the lungs and 
liver (19,20). Therefore, understanding the role of MPs 
and their impact is essential to ensure that the health of 
humans, animals, and aquatic life is not compromised. To 
increase the knowledge about MPs and their control, it is 
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Abstract
Background: One of the most serious environmental challenges is pollution caused by microplastics. 
They are found in many parts of the environment, but most research has focused on aquatic 
environments. Municipal solid waste is the main source of microplastics on land, which has been largely 
ignored. The sources of microplastics in solid waste can be landfills, sludge, compost, and food waste. 
Landfills pose a threat to soil and groundwater pollution. Addition of sludge or compost to the soil for 
fertility poses a threat to the entry of microplastics into the human food chain. Therefore, it is essential 
to comprehend the behavior of microplastics in various types of solid waste. 
Methods: We conducted a literature search, screened the articles, and selected the relevant articles. The 
search was performed in 3 main databases: PubMed, Scopus, and Web of Science. This study evaluated 
the characteristics of microplastics in landfills, sewage sludge, compost, and food waste, their fate, and 
their entry into the human body. Finally, methods of biological removal are mentioned.
Results: A total of 335 articles were retrieved from three databases; after removing duplicates, 195 
articles remained. By screening and removing reviews, notes, books, and irrelevant articles, we identified 
74 articles focused on microplastics in municipal solid waste.
Conclusion: Municipal solid waste is a source of microplastics, which includes landfill waste, sludge, 
compost, and food waste. The results of this study will pave the way for future researchers to gain a 
deeper understanding of the behavior of this pollutant in solid waste.
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necessary to know all their sources. Although solid waste 
is one of the important sources of increasing MPs in the 
environment, there is a lack of information in this field, 
and this important source has been largely ignored. Here, 
we documented the main types of solid waste that cause 
MPs pollution. 

Materials and Methods
We searched, screened, and selected the relevant papers, as 
shown in Figure 1. The words used to search the database 
are as follows:
• PubMed: ((Microplast*[Title/Abstract]) OR 

(“Microplastics”[Mesh])) AND (((“Solid 
Waste”[Mesh]) OR “Composting”[Mesh]) OR 
(Solid waste*[Title/Abstract] OR Municipal solid 
waste*[Title/Abstract] OR landfill*[Title/Abstract] 
OR Leachate*[Title/Abstract] OR Sludge*[Title/
Abstract] OR Biodegradat*[Title/Abstract] OR 
Compost*[Title/Abstract] OR Food waste*[Title/
Abstract] OR Sea food*[Title/Abstract]))

• Web of Science: (TS = Microplast*) AND (TS = (“Solid 
waste*” OR “Municipal solid waste*” OR landfill* 
OR Leachate* OR Sludge* OR Biodegradat* OR 
Compost* OR “Food waste*” OR Seafood*))

• Scopus: TITLE-ABS-KEY (microplast*) AND 
TITLE-ABS-KEY (“Solid waste*” OR “Municipal 
solid waste*” OR landfill* OR leachate* OR sludge* 
OR biodegradat* OR compost* OR “Food waste*” 
OR seafood* 

Results
In the screening stage, EndNote software was used. The 
authors first screened all abstracts and titles from the 
search based on the inclusion and exclusion criteria, 
then excluded completely irrelevant studies. A total of 
335 articles were retrieved from three databases; after 
removing duplicates, 195 articles remained. By screening 

and removing reviews, notes, conferences, books, and 
irrelevant articles, we reached a total of 74 articles that 
focused on MPs’ contamination and accumulation in 
municipal solid waste. Finally, 74 articles were reviewed. 
This review aimed to present the major types of solid 
waste that produce MPs pollution and give an overview 
of the amounts of MPs in solid waste, and suggest future 
research directions.

Discussion
Solid waste as a source of MPs
A landfill, the most common method of waste disposal, 
can be a source of MPs production in the environment. 
It should be noted that compost can be an important 
source of MPs released into agricultural soils and, 
consequently, agricultural products. Another part related 
to municipal solid waste is the burning of waste by 
incinerators. The ash from incinerators can contain MPs. 
In this regard, Bern et al. identified MPs in incinerator 
ash (21,22). Municipal solid waste transfer stations can 
also be a source of releasing MPs into the air and pose 
a risk of inhaling these pollutants. In this regard, Hu et 
al conducted research, and the presence of MPs in the 
air around municipal solid waste transfer stations with 
a diameter of 400 micrometers has been proven (23). 
He et al also mentioned that treatment processes can 
produce MPs (12). Organic matter from the mechanical-
biological treatment of municipal solid waste can be a 
source of increasing MPs in the environment, which 
is still not well understood (24). The plastic recycling 
industry can be a source of MPs production. Suzuki et al 
reported that, considering the trend of increasing plastic 
use and its importance in the economic cycle, more 
MPs emissions can be expected (25). Gao et al reported 
that the recycling of PET bottles created MPs (26). In 
the following section, we discuss the studies conducted 
in the field of MPs in landfills, sludge, compost, and 

Figure 1. Schematic representation of the articles’ selection and screening processes for this review
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food waste.

Microplastics in landfills 
Landfills can account for about 40% of the share of MPs 
released into the environment (27). Plastics in landfills 
are of a secondary type because they are created by 
degradation and crushing (28). Researchers have reported 
that the amount of MPs in landfills is much higher 
than the amount in soil and sludge (29). Additionally, 
the identification of MPs in aquatic organisms, such as 
mussels, can be attributed to the proximity of the landfill 
to these water resources (30). The age of the landfill is a 
crucial factor in the release of MPs. Some studies have 
examined MPs in landfills of different ages (31). The 
leachate is a strong wastewater with a high concentration 
of contaminants. Recent studies have proven the presence 
of MPs in the landfill leachate (32). Some studies 
conducted in this field are presented in Table 1. Kilponen 
(33) investigated the concentration of MPs in leachate, 
and the results showed that the concentration of MPs was 
1.1 MPs/L. The size of these MPs was often more than 1 
mm. Another study in China identified 500-1000 MPs in 
landfill waste. In this study, the predominant form of MPs 
was fibrous, and their color was clear. The predominant 
composition also included PE, PP, and polyethylene 
terephthalate (PET) (34). Kabir investigated the presence 
of MPs in landfill leachate and reported an average MPs 
concentration of 0–2.7  per liter of leachate, and the 
predominant composition was PE and PP (35). Polymer 
compositions of MPs in refuse and leachate landfills are 
shown in Figure 2. Knowing the type of composition of 
MPs gives us the possibility to determine the type of plastic 
used most frequently and to implement effective plastic 
control and minimization programs. In the landfill, the 
dominant polymers are as follows: PE, PP, PS, expanded 
polystyrene (EPM), and polyether urethane (PEUR) (31). 
Figure 2 illustrates the abundance of MPs with different 
polymer types in leachate and landfills, as shown in 
Table 1. Moreover, in Figure 3, we compared the types of 
polymers present in landfills across different countries, as 
listed in Table 1. As seen in Figures 3 and 4, polyethylene, 
PP, and fibers and fragments have been the most abundant 
materials in landfills across various countries worldwide.

Microplastics in sludge
Sludge in wastewater treatment plants, as solid waste, can 
be a source of releasing MPs into the environment. Studies 
on the efficiency of removing MPs in treatment plants 
indicate that MPs are still present in the treated sludge. 
The risk of their release into the environment depends 
on the method of sludge management (47,58,86,87). 
The researchers stated that the concentration of MPs 
in the primary sludge was higher than in the secondary 
sludge, which could be attributed to the percentage of 
MPs removed in the secondary treatment. Corradini et al 

in Chile reported that The average number of MPs in 1 
g of sludge was 34 particles, and the predominant shape 
was fiber (39). Xu et al collected samples from the largest 
sewage treatment plant in China and investigated the MPs 
in this sludge. The results showed that the concentration 
was approximately 4000 particles per kilogram of sludge, 
and 25 compounds of MPs were also identified, with PBA 
being the dominant compound (36). Li et al, in a study, 
reported that the concentration of particles in the sampled 
sludge ranged from 1.60 to 56.4 particles per kilogram of 
sludge. The predominant color and shape identified were 
white and fiber, respectively (43). Fibers and fragments 
occupy a large proportion of the MPs found in both raw 
and treated sludge (Figure 5). The size of MPs in sludge 
depends on the type of method used in the wastewater 
treatment process (88). One of the methods of reuse is 
the use of sludge in the soil, which is being implemented 
worldwide. However, if the sludge is used in the soil for 
a long time, it leads to the release of MPs into the soil 
and, consequently, into the human food chain (89). MPs 
in sludge can react with other toxic elements to form 
hazardous compounds (90). In a study conducted by 
Yang, the number of MPs in a sludge (which had been 
used for years) was approximately 149.2-68.6 particles 

Figure 2. The abundance of MPs with different polymer types in leachate 
and landfills, as presented in Table 1
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Table 1. Reviewing the literature on the abundance of MPs in sludge, compost, landfill, and leachate

Country Concentration Composition Size Shape Color Identification device Ref

Sludge

China 4044 ± 1359 particles/kg Rayon, PE, PET, PP, PP/PE, and PS, ABS 0.19-0.13 mm Pellets, fragments, films, and 
microfibers - FTIR (36)

Ireland 4196–15,385 items/kg PA, PP, PET 0.25–4 mm Fiber, fragment, film, sphere - SEM (37)

Italy 56000–170000 items/kg PES, PA 0.5–0.1 mm Fiber, fragment - μFT-IR (38)

Chile 18000 to 41000 particles kg−1 Acrylic, Nylon, PS 0.04-2.7 mm Fiber, fragment - - (39)

Russia 15000-627000 particles kg−1 - - - - - (40)

United States 0–12 g/kg PET, PC - - - - (41)

China 234.7–6908.3 items/kg PP, PE, PP, PET, PAN 0.5-5 mm Fiber, fragment, and film - Optical microscope (42)

China 1565–271,700 items/kg PA, PP, PE, polyolefin, acrylic 0.025–5 mm Fiber, fragment - - (43-45) 

Poland 6700–62600 items/kg - - - - - (46)

United States 800–4000 items/kg -  < 5 mm Fiber Red, blue, green, violet, and yellow - (47) 

Canada Secondary sludge:
1500–7300 items/kg - - Fiber, fragment - FTIR (48)

Germany 1000–24000 items/kg PE  < 5 mm - - μFTIR (49)

Finland 8.2–301.4 items/kg -  < 1 mm - - FTIR (50)

China 44.4–750 items/kg PP, PE, PS, PVC, PET, Nylon ＞ 1 mm Fiber
Green,
Translucent,
white

Microscope, FTIR (51)

China 13.06 × 103

- 29.66 × 103 items/kg PE, PP, PET - Fragments,
film, fibrous, granular

Transparent,
black, white, red, green, blue, yellow Microscope, FTIR (52)

China 5583 items/kg PP, PE, PS, PA, PET, PVC  < 300 µm Fragment fiber Transparent, gray, blue,
black, red, pale brown, green

Microscope,
Roman (53)

China 5524 items/kg PP, PE, PS, PET, PA, PVC -

Fibers,
films,
fragments,
microbeads

White,
transparent,
black, blue, green, yellow,
pink

SEM-EDS,
FTIR (54)

Italy 4740 items/kg PE and PP 0.1–0.5 mm Film, fragments,
lines, glitters - Stereomicroscope,

μ-FTIR (55)

Australia 15900 -
56500 items/kg

PET, PP, PE,
Nylon  > 25 µm Fiber and fragment Black, green, yellow,

white and transparent μFTIR, ATR FTIR (56)

Korea 14900 items/kg -  > 106 Fibers, fragments Red, blue, black, green,
yellow, brown μFTIR, ATR FTIR (57)

England 2000 items/kg - 1.34–1.62 mm - - - (58)
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Country Concentration Composition Size Shape Color Identification device Ref

Compost

Spain 5–20 particles/g PE, PS, PP, PVC, acrylic Fragments and fibers - FTIR (59)

Poland 1200 mg plastic kg-1 - - - - NIR (60)

China 11,640 ± 3565 items kg−1 PP and PE 1.35 ± 1.00 mm Fibers-Fragment Different color FTIR (61)

Sri Lanka 10–2800 item kg−1 - - - - - (62)

China 104 particles ∙kg−1 PE 0.05–0.5 mm Fragment - μFTIR- SEM (63)

China 386 items/kg - 1–3 mm Film White-transparent - (64)

China 2533 ± 457 item kg−1 PS, PE, PP 0.05–5.0mm - - μFTIR- SEM (65)

Taiwan 53 ± 34 item m2 PE, PP, PS 1.0–5.0 Fragment- fibers White-transparent FTIR- SEM (66)

China 3780 items/kg PP, PR, PE, PET - Fragment- fibers White, red, blue μFTIR- SEM (67)

China 1250 items/kg Rayon 1–3 mm Fragment, film Transparent, white, green,
purple μFTIR, ATR FTIR (68)

Mexico 129800 items/kg - 0.1-1mm - - Stereomicroscope (69)

Finnish 6.6 ± 1.5 items/kg PET, PE, acrylates, ABS,
PP, PS, PU - - - SEM- FTIR (70)

Germany 12 ± 8–46 ± 8 - - Fibers and
fragments - Microscope (21)

Germany 39–102 PVC, PE, PET, PS, PES 1.0–5.0 mm Fragment and
film, fiber, sphere - Stereomicroscope,

ATR-FTIR (71)

Netherlands 2800 ± 616 item kg−1 PE and PP 0.03-2mm - - SEM- FTIR (72)

Table 1. Continued.
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Country Concentration Composition Size Shape Color Identification device Ref

Landfill
& leachate

China 291 ± 91 particles/L in leachate PP, PA, rayon, PE 20–100 μm Film, floc, flake, strip, and 
fragments

Translucent, light yellow, dark yellow, 
and blue FTIR (30)

China

landfill refuse: 590 to 103,080 
items/kg
landfill leachate: 3 to 25 
items/L

PE, PP, PET - - - FTIR (73)

Cambodia 218,182 pieces/kg
dumping site PE and PP - - - FTIR- SEM (34)

France Surface water: 6 items/L
Sediments: 50–1110 items/kg PS, PP, PET 0.02–0.08 mm Fragment, fiber, film, sphere Black, blue, red, white, transparent, 

and green micro-Raman (74)

United Arab 
Emirates

43.1 mg/L- 19868 items/L in 
leachate PET, PP, PVC, LDPE, HDPE, PS, PC 0.0005 mm - - SEM-EDX and FTIR (75)

China 0.42 to 24.58 items/L in 
leachate PE, PP 0.1-1 mm Fragment - FTIR- μFT-IR (12)

Thailand
Landfill leachate: 13.5–27.5 
items/l PE, PP, PET Fiber, film, granule, irregular, 

sphere - FTIR (76)

China

Landfill refuse: 20000–91000 
items/kg
landfill leachate: 0.4–24.6 
items/L

PE, PP, PEUR, PS, EPM, Cellophane 0.07–1 mm Fragment, fiber, flake, granule - μFT-IR (12,31)

Serbia Leachate: 0.64 - 2.16 mg L−1 BPA - - - - (77)

Indonesia Leachate: 80640 ± 604.80 
particles PP-PE-PS - Cellophane - FTIR, μFTIR (78)

Iran Leachate: 79.16 items/L nylon  < 25 μm Fibers Black µRaman (79)

Iran Landfill: 25 ± 138 particles/kg LDPE, PP, and PS 0.5–1.0 cm Film Black and withe FTIR-ATR (80)

China Leachate: 235.4 ± 17.1 item/L PA, PVA, PVB, PMP, PAA, PBMA  < 50 µm Fiber, film, fragment, Beads - µRaman (81)

China Leachate: 1.2 ± 0.57 items/L PE, PS, PES, PP, PA, EPM, PVAC - fiber - μFTIR, ATR FTIR, SEM (82)

India Leachate: 2–80 items/L PP, PS - Nylon, Pellets, foam, fragments, 
fibers White, black, green, red, blue, yellow ATR-FTIR, SEM-EDX (83)

France 244 items/L PS-PA-PET-PP - Films, fragments, microbeads, 
fibers Dark, red, yellow, blue, white or green µRaman (84)

Finland
Norway
Iceland

2.36 µg/L
1.17 µg/L
0.71 µg/L

•	 PE, PS, PET, PU
•	 PET, PMMA
•	 PE, PS, PET, PU

 > 500 μm - - μFTIR
ATR-FTIR (35)

Lithuania
Autumn: 17407 ± 1739 
particles kg−1 in and winter: 
15400 ± 1217 particles kg−1 in 

PP- LDPE-HDPE - Fragments-Film - FTIR (85)

Table 1. Continued.
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per kilogram of dry sludge, as reported (68). Additionally, 
MPs can serve as a platform for transporting pollutants, 
including heavy metals and pathogenic microorganisms 
(91). Therefore, extensive studies on MPs in sludge and 
the management of the application of sludge in soil are 
necessary.

Microplastics in compost 
One of the resources considered a non-renewable 
resource for human life is soil. Therefore, investing 
in and preserving this resource is vital. Much news is 
reported about the daily release of plastics into marine 
ecosystems (92). However, in the meantime, there is 
another environmental damage and danger that has 
received very little attention but has a high-risk potential, 
and that is agricultural pollution caused by plastic. The 
use of plastic in agriculture can lead to the penetration of 
plastics into the soil, and subsequently, they often enter 
the food chain (Figure 6). Studies reveal a high presence 
of MPs in agricultural soils and vegetable farmlands. Some 
studies have reported the absorption of plastic particles 
by the roots of lettuce, wheat, and cucumbers (93). The 
possibility of absorption of MPs particles by plants is 
high (94). Especially when crops are fed by compost 
contaminated with MPs, or grown in soils contaminated 
with sludge or sewage (95). An excessive number of MPs in 
compost has been reported in the literature, which creates 
concern in the agricultural industry in recent years (96). 

A study in China reveals that the concentration of MPs in 
the compost obtained from municipal solid waste ranged 
from approximately 140 to 316 items per kilogram, with 
MPs measuring approximately 1 mm in size (61). Another 
research in Taiwan investigated MPs in compost, and the 
results showed that the amount of MPs is 53 per square 
meter of compost with a size of 1-5 mm (66). Similar 
results are found in the Dutch and Sri Lankan compost, 
which indicate a number of MPs of approximately 2800 
per kilogram, with a particle size of 0.03 mm. Examining 
the studies, we find that the common components in 
compost are polyester, PP, and polyethylene. Moreover, 
the dominant shape is fibers, pieces, shafts, and fine grains 
(62). These results were conducted in Spain on MPs in 
compost and reported the amount of 5-20 particles per 
gram of dry weight, which was the predominant form of 
fibers (59). Fertilizer refers to any material that is generally 
added to the agricultural soil to strengthen it due to the 
positive effects of the valuable elements in it. To address 
the deficiency in soil nutrients required for plant growth, 
the use of fertilizer will be highly beneficial. However, the 
presence of MPs in fertilizers has also been reported (65). 
The amount of MPs in organic fertilizers depends on the 
biological method used in the preparation of the fertilizer. 
According to the studies, this amount is about 30 000 
items per kilogram with a size of less than 3 mm (97). In 

Figure 3. Polymer composition in landfills worldwide, as presented in Table 1

Figure 4. Shapes of MPs in landfills worldwide, as presented in Table 1

Figure 5. Major shapes of MP particles in different types of sludge (from 
19 papers)

Figure 6. Microplastics in the food chain
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past studies, little attention has been paid to the presence 
of MPs in fertilizers and their effects on the health of 
animals, plants, and humans. Other pollutants (such 
as heavy metals, etc.) were the main target of studies in 
organic fertilizers and compost, so in future research, it is 
necessary to concentrate more MPs and provide a solution 
to reduce the abundance of MPs in fertilizers (98).

Microplastics in food waste
In recent years, attention to packaging in food production 
has increased. Almost all the food prepared, mainly 
processed types, comes with packaging. Unfortunately, 
most of the packaging we see around us is disposable, and 
they are usually thrown away after consumption. These 
plastics enter the human food cycle through terrestrial 
and marine food sources and are ultimately discarded 
as food waste. Extensive studies have been conducted on 
the presence of MPs in aquatic animals and invertebrates. 
MPs have been detected in the body tissue of mussels (99), 
oysters (100), clams (100,101), and crabs (102,103). Li et al 
examined Chinese mussels (Mytilus edulis) for the presence 
of MPs and found that the most common form was fibers 
and fragments (104). Oliveri Conti et al. showed in a study 
that fruits have more MPs (size 10 micrometers) than 
vegetables (104). Hosseinpour et al examined 14 species 
of fish in the Persian Gulf for the presence of MPs in their 
tissue and reported the dominant shape, color, and size 
as fiber, black, and less than 75 micrometers, respectively 
(105). Other studies have reported the presence of 
MPs in drinking water, salt, fish, and honey. Some of 
these studies are given in the table (56-80). According 
to the studies, it can be concluded that the dominant 
composition of MPs in food and food waste is as follows: 
(PU) < (PVC) < (PS) < (CP) < (RY) < (PA) < (PEST) < (PE) 
(106-108). By comparing the amount of MPs in seafood, 
we find that the amount of MPs in mussels is higher than in 
other organisms. A study conducted in Italy reported this 
amount in mussel oysters ranging from 0 to 1.5 items per 
kilogram of muscle body tissue. The size of these particles 
was in the range of 0.01-5 mm (109). A similar study 
in India evaluated the types of bivalves in five locations 
in terms of the presence of MPs. The highest frequency 
of MPs was 163 items per liter, with the most common 
shape being fibers, and the size of MPs was often below 2 
mm. The most common polymers identified are PP and 
high-density polyethylene (110). In a study conducted in 
Brazil, MPs were found in farmed fish for the first time. 
The results of this study showed that MPs with fiber 
shapes and red, blue, and transparent colors were the most 
observed MPs. The abundance of MPs in two rainy and 
dry seasons was reported as 286 items and 58 items per 
liter, respectively. The water from the fishponds by the 
rivers is supplied. Therefore, water pollution with waste 
and wastewater containing MPs can also be a reason for 
fish pollution (111). Figure 7 shows the abundance of 

MPs (with different polymer types) in food waste based 
on Table 2.

Degradation of MPs in solid waste
Polymer degradation refers to any change in the physical 
or chemical properties of plastic materials that occurs as a 
result of exposure to specific environmental factors, such 
as light, heat, moisture, or biological activity. Specifically, 
these types of polymer degradation methods are referred 
to as optical degradation, thermal-oxidative degradation, 
and biodegradation, respectively. Biodegradation enables 
microorganisms, such as bacteria, fungi, and algae, to break 
down polymer materials through their metabolic activity. 
They rely on this form of biodegradation, which does not 
require thermal energy and can be carried out under either 
aerobic or anaerobic conditions. For example, aerobic 
biodegradation yields the production of carbon dioxide 
and water in the soil, whereas anaerobic decomposition 
typically results in the production of carbon dioxide, water, 
and methane. In general, the biodegradation of polymers 
is a very complex process that depends on several factors, 
including substrate availability, surface characteristics, 
morphology, and polymer molecular weight (136-140). 
Recently, researchers have discovered bacteria that can 
eat plastic, and it has been reported that these bacteria 
originate from landfills, specifically from the species of 
the phyla Proteobacteria, Actinobacteria, and Firmicutes 
(141). Some earthworms and insect larvae are also 
capable of decomposing plastic. The reason why worms 
can decompose MPs is the presence of Pseudomonas 
aeruginosa bacteria in their intestines, which easily 
decompose polystyrene MPs (142,143). Also, Bacillus 
strains showed high degradation of PP within 40 days 
(144). The larvae of the yellow ardalo worm are capable 
of decomposing polyvinyl chloride (145). The microbial 
population located in the gut of Achatina fulica (snails) 
was able to degrade PS significantly (146). Likewise, 
Tribolium castaneum larvae harbor Acinetobacter 
bacteria and decompose PS, while citrus mealybugs 
possess endosymbiotic bacteria that enable them to break 
down polyethylene (147). Fungi also have the potential 
to decompose MPs. They can do this by using enzymes. 

Figure 7. The abundance of MPs with different polymer types in food 
waste, as shown in Table 2
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Table 2. Reviewing the literature on the abundance of MPs in food waste

Food Products Country Concentration Composition Size Shape Color Identification 
device Ref

Clam (Corbicula fluminea) China 0.3-4.9 items/g PS-PP-PE 0.021-4.83 
mm fibers Blue and transparent μFTIR (112)

Mussel (Mytilus galloprovincialis) Italy 0–1.5 ± 0.58

PE, PP, PS, PVC, PET, PA, EVA, PI, PEST, 
PU, epoxy resin, PBT, poly terpene rubber, 
PVOH, silicone, poly acrylate, copoly (EVA/
PA), copoly (PVC/PVOH/PE)

0.01-5 mm Fibers - - (113)

Honey Switzerland 0–8.3 PET-PS 50 μm Fibers Black, white, transparent FTIR–ATR (114)

Chicken gizzard Mexico 45.82 ± 42.6 per gizzard PE-PS 1-5 mm Fiber - - (69)

Packaged chicken breasts, packaged 
turkey escalopes (Extruded PS tray) franc 4.0 to 18.7 EPS, PS 0.3-0.4 mm Fibers,

fragment - FTIR (115)

Shrimp India 0.39 ± 0.6 PA, PE, PP 157 – 2785 
µm

Fibers, fragments, 
sheets

Red, Blue, Black, Transpare and 
Green FTIR (116)

Canned fish Iran 25.60 ± 0.87 PET, PS, PP, PA, PVC, LDPE 0.1-5 mm Fibers black -blue -green -red 
-transparent 

SEM-EDX- 
μ-Raman (117)

Mussel China 0.9 to 4.6 items/g CP, PET, and PES 0.25-1 mm Fibers-Fragment- 
sphere- flake - μ–FTIR

SEM (105)

Fish Sydney 0.2 to 4.6 items/fish PET, PS, and rayon 0.13–5 mm Fiber, - ATR-FTIR
μ-Raman

(118-
125) 

Fish Creek 0.5-70 items/fish LDPE, PPH, PVC, HDPE 0.32-1.4 mm Fibers, fragments, 
beads - FTIR (126)

Oysters China 1.5 to 7.2 items/g PET, PE, PES, CPVC, PA 0.02-5 mm Fibers Transparent, white, green, yellow, 
blue, brown, black, and red μ FTIR (127)

Salt Spain 50–280 MPs/kg PET, PE, PP, 30 μm to 
3.5 mm

Fiber, fragment, 
pellet

Black, red, blue, white, and 
transparent FTIR (128) 

African table salts Africa (0–1.333 MP/kg) PVA, PP, PE - Fiber - FTIR
SEM (129)

Salt
Iran-France-
Malaysia-south 
Africa

1–10 items/kg PE, PET, PS, poly acrylonitrile 0.16–0.98 
mm

Fragment, 
filament, film μ-Raman (130)

Bivalves India Digestive gland: 22.8-5.6
gill: 29.6-8.5 PP, PE less than 2 

mm Fibers Raman (109)

Oyster United Arab 
Emirates 101.2 ± 93.8 MP/Kg found in oysters - 1.0-2.0 mm Fibers- fragments Transparent, black, blue, red, 

pink, white, and green ATR-FTIR (108)

Mussels Moroccan - 
Tunisian

Morocco (gills: 1.88 MPs/g ww−1; digestive 
glands: 0.92 MPs/g ww−1) Tunisia (gills: 1.47 
MPs g− 1; digestive glands: 0.79 MPs g− 1)

PET, PP, and PE 1000 μm Fibers - ATR-FTIR
SEM-EDX (131)

Fish farming Brazil rainy season (286 items mL−1

dry season (58 items mL−1) - - Fibers Blue- Transparent-red- Stereoscopic 
microscope (110)

Fish Philippines 0.08 to 2.0 MP/fish PP-PE- PET 1.6 mm Fragments - Raman (132)

Fish Hong Kong 44.0 items Nylon 66, PE, PP, PS, PE, PMMA Fibers- fragments FTIR (133)

Oysters and mussels Brazil 44.1 particles·g−1 Cellulose-PMMA 1000 μm Fibers Transparent-white- black, blue, 
green, red FTIR (134)

Dry fish Indian 99 ± 18.91 MPs/g LDPE, PP  < 100 μm Fragments - FTIR (135)
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Numerous studies confirm this statement. For example, in 
a study conducted on a species of marine mushroom, it 
was found that the mushroom used polyethylene to grow 
and reduced its amount. In another study, the Aspergillus 
flavus PEDX3-degrading fungus was investigated from 
the intestine of a worm, and within 4 weeks, the fungus 
was able to degrade HDPE (96,148,149). Limited algae can 
decompose MPs, although biodegradation by algae is not 
very effective. However, some algae can decompose lignin 
and extracellular polysaccharides. Species can decompose 
blue-green algae, green algae, diatoms, Navicula pular 
and Scenedesmus dimorphus. The future has a promising 
perspective on plastic degradation by algae (150-153). 

Conclusion
This study examined municipal solid waste as a source 
of MPs emission, which includes landfill waste, sludge, 
compost, and food waste. Due to the increasing use of 
plastic in the food packaging industry and factories, there 
is a possibility of transferring MPs to the environment 
through the disposal of plastic containers. If these 
containers are disposed of in landfills, they contribute to 
the production of MPs in landfills. Landfills can introduce 
MPs into the environment through leachate. Sludge used 
in agricultural soils, fertilizers, and compost is another 
source of MPs release. Sludge, compost, and fertilizer can 
release MPs into the environment through the soil and 
food chain, ultimately entering the human body. This 
systematic review reveals that polyethylene, PP, and fibers 
and fragments are the most abundant materials in landfills 
across various countries worldwide.

In addition, MPs are like sponges, absorbing all the toxic 
substances around them. It can provide a surface for the 
absorption of toxic metals. Fish and other animals, plants, 
and agricultural products uptake them and return them 
right to your dinner plate. However, only limited research 
has been conducted on MP in solid waste. Therefore, it 
is necessary to conduct further research and inform the 
public about this emerging pollutant. There are gaps in 
these studies; for example, there is no standard for leachate 
sampling, especially for smaller-sized microplastics. 
In addition, it is essential to pay attention to the role of 
microplastics as a carrier of pollutants and a cause of 
disease in future studies.
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