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Introduction
Water, as an essential resource, plays a significant role in 
sustainable life on the Earth’s surface. It plays a significant 
role in agriculture, industries, sanitation, public health, 
etc. Access to safe and clean water is essential for 
human survival. However, nowadays, due to growing 
populations, rapid urbanization, increased industrial and 
agricultural activities, and untreated effluent discharges, 
surface water quality is degrading day by day. According 
to a survey conducted by the UNICEF and World Health 
Organization (WHO), approximately 2 billion people live 
in high water-stress countries worldwide, and around 
2.2 billion people have no access to clean water. They 
are using unsafe drinking water, which is responsible 
for 485,000 diarrheal deaths annually, especially in 
developing countries (1). Pakistan, as a developing 
Asian country, is also facing challenges related to water 

quality pollution. Approximately 60% of Pakistan’s rivers 
are heavily polluted, with harmful levels of chemical 
pollutants, including pesticides, heavy metals, and 
untreated sewage (2). This has far-reaching consequences 
for both ecosystems and public health. These alarming 
situations underscore the urgent need for water quality 
management and prediction. Water quality parameter 
testing is a time-consuming task that necessitates the use 
of specialized expertise and equipment (3). Conversely, 
machine learning-based water quality simulations provide 
a solid alternative to traditional laboratory testing. Various 
models, including deterministic, statistical, stochastic, 
and numerical models, are extensively used for simulating 
water quality. The aforementioned models, however, have 
several shortcomings, including a complex structure and 
a reliance on large amounts of data for model creation 
(4–7). Moreover, the aforementioned models had low 
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Abstract
Background: Electrical conductivity (EC) is an important indicator of surface water quality, primarily 
influenced by temperature, salinity, and human activities. The conventional EC experimental technique 
is resource-intensive and time-consuming. Recent advancements in machine learning provide an 
innovative technique for accurate EC prediction using historical time series data. 
Methods: Surface water EC was assessed via four machine learning techniques, namely Artificial Neural 
Network (ANN), Recurrent Neural Network (RNN), Convolutional Neural Network (CNN), and Long 
Short-Term Memory (LSTM). The predictive capability of the aforementioned models was assessed via 
six statistical performance indicators, namely Coefficient of determination (R2), Percent Bia (PBias), 
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Root Mean Square Error 
(RRMSE), and Nash-Sutcliffe Efficiency (NSE). 
Results: The findings of the present research work show that the LSTM model outperforms in predicting 
EC. The LSTM model’s efficacy was demonstrated by its outstanding R2 values of 0.99 and 0.94 during 
training and testing, respectively. Notably, RNN, ANN, and CNN ranked second, third, and fourth, 
respectively, based on statistical performance indicators.
Conclusion: The results show that LSTM outperforms the remaining models in predicting EC. The 
findings of this study can assist water quality managers in finding the optimum machine learning 
model for modeling EC in the understudied area. Overall, this work advances our understanding of EC 
prediction using machine learning techniques.
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forecast precision in predicting water quality. Statistical 
techniques for water quality modeling typically assume a 
linear relationship between dependent and independent 
variables. 

Literature presents that the use of traditional approaches 
(manual sampling and laboratory tests) for water quality 
monitoring was widespread earlier (8,9). Although 
these methods were efficient in localized water quality 
monitoring, they were invaluable, yet time-consuming, 
and limited in their applicability to large and dynamic 
datasets (10). Furthermore, these methods were also 
unable to predict the real-time water quality parameters. 
Therefore, these were shifted to advanced models such as 
statistical and machine learning models. 

Several studies in Pakistan have utilized statistical 
models (e.g., PCA, regression analysis, correlation 
analysis, Cluster analysis, and Water Quality Index) 
to assess the water quality of various rivers, including 
the River Swat, River Hunza, Indus River, and River 
Ravi, etc. (11–15). Despite their extensive use, they have 
some drawbacks, as they can only handle stationary 
and linear datasets (16). Conversely, AI models surpass 
the constraints of conventional models by being able to 
analyze non-linear data and complex hydrological and 
environmental processes. This motivated the authors to 
employ advanced AI techniques, as these models have 
the capability of predicting and modeling the internal 
link between water quality parameters and modeling 
their time series. Machine learning models, including 
gene expression programming (GEP), artificial neural 
networks (ANN), Hybrid RT-Artificial Neural Network 
(RT-ANN), Random Forest (RF), gradient boosting, 
polynomial regression, etc., have enhanced the accuracy 
in recent works (17–22). These models were able to 
capture non-linear data and deal with large datasets. 
Despite their superior performance in handling complex 
data as compared to the traditional and statistical 
models, these models still face challenges in dealing 
with time dependencies and time-series data. This led 
to the incorporation of advanced AI models, such as 
LSTM, ANN, RNN, and CNN, to improve accuracy 
and overcome the limitations of previous models. These 
models are efficient in handling complex time-series data 
and analyzing high-dimensional interactions between 
water quality parameters. The LSTM model is effective in 
time-series data and long-term dependencies, while ANN 
and RNN can manage nonlinear and dynamic datasets. 
Moreover, CNN can capture spatial correlation. The use 
of these advanced models enables accurate prediction, 
marking a significant advancement in water quality 
prediction as compared to other approaches. These 
properties of deep learning models inspired the authors 
to carry out the present research work. 

This study aimed to compare the predictive capability 
of deep learning techniques in simulating electrical 

conductivity at the Bara River Basin. Initially, the model’s 
predictive capability was assessed using statistical 
performance indicators. Later, the best-performing model 
was selected via compromise programming. The superior 
model will be used for managing the water quality of the 
study area. 

The novelty of the present study lies in its comprehensive 
approach to predicting the electrical conductivity (EC) 
of river water by leveraging multiple neural networks, 
including ANN, RNN, CNN, and LSTM. Unlike previous 
studies that typically relied on a single model, this 
research integrates and compares multiple deep learning 
techniques to enhance prediction accuracy and reliability. 
Furthermore, the study presents the first application of 
neural network-based EC prediction for the river Bara, 
providing a pioneering assessment of advanced machine 
learning models. The research identifies the most effective 
approach, thereby contributing valuable insights for 
improved water quality management and environmental 
sustainability. 

Study area
The Bara River, a prominent geographical feature in 
Pakistan’s Khyber Pakhtunkhwa region, originates in the 
Tirah Valley in Bara Tehsil, Khyber Agency. The river’s 
journey begins in the natural splendor of the Tirah Valley, 
a place distinguished by its distinctive terrain and cultural 
diversity. The Bara River flows from its source across a 
varied topography before joining the Kabul River Canal, 
whose waters originate from the Warsak Dam. The Bara 
River then continues north-eastward, flowing through 
the scenic Nowshera District. Its journey comes to an 
end when it enters the Kabul River at Camp Koruna 
in Akbarpura. The river has significant variations in 
discharge, with annual runoff ranging between 0.02 and 
0.23 million acre-feet (MAF) (23). The total catchment 
area of the river is 1793 km2 (24). The water quality 
monitoring station is located at Jhansi post, with a latitude 
of 33.8707 and a longitude of 71.4092. This area was 
chosen because it represents the traits and dynamics of 
the Bara River in Khyber Pakhtunkhwa, Pakistan. Figure 1 
depicts the study area. 

Materials and Methods
Data Collection and Description
The water quality data for the Bara River at Jhansi post 
station, spanning from 1963 to 2007, were collected from 
the Surface Water Hydrology Department and the Water 
& Power Development Authority (WAPDA). The dataset 
comprised Ca, Mg, Cl, HCO3, Na, SO4, Sodium Adsorption 
Ratio (SAR), Suspended solids, electrical conductivity, 
water temperature, dissolved oxygen, turbidity, and pH 
indicators. These aforementioned parameters play a vital 
role in water quality assessment.
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Techniques Used
This study aimed to compare the predictive capability 
of deep learning techniques in simulating electrical 
conductivity at the Bara River Basin. Initially, the model’s 
predictive capability was assessed using statistical 
performance indicators. Later, the best-performing model 
was selected via compromise programming. The step-by-
step procedure used in this study is demonstrated Figure 2. 

Data Preprocessing
Data preprocessing is the process of preparing raw data 
for analysis using various operations and transformations, 
including handling missing values and outliers, as the 
collected data included minor missing values, which were 
addressed by applying the Mean Imputation approach. 
Outliers are identified using the Interquartile Range 
(IQR) method. The values beyond 1.5 times the IQR 1st 
and 3rd quartiles were capped to the nearest valid range. 
Moreover, Min-max scaling is applied to the dataset 
before model training to standardize the water quality 
indicators. This stage ensured that all water quality 
indicators fell within a specific range, which improved the 
model’s ability to mitigate the impact of dominant water 
quality indicators on model training. Min-max scaling 
is commonly used in neural networks and is effective in 

handling datasets without outliers (25). This approach 
has better performance in Artificial Neural Networks and 
also facilitates faster convergence. 

Train-Test Split
The test-train split is the process of evaluating a model’s 
performance, specifically how it performs with new 
data. In this research work, the observed water quality 
data were divided into two parts: training (80%) and 
testing (20%). The training dataset was used for model 
development, while the testing dataset was used for 
assessing generalization performance.

Deep learning techniques
Artificial Neural Network (ANN)
ANN is a machine learning model that works like a 
biological neuron network. It consists of interconnected 
units that work together to solve a complex problem. It 
is used for both type analysis, including classification and 
regression. In the present study, the ANN model consists 
of three layers: an input layer, a hidden layer, and an 
output layer, as shown in Figure 3.

These layers form a network of interconnected nodes, 
which serve as the foundation of this model. During 
the training process, the networks adjust the assigned 

Figure 1. Description of the study area
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weightage to learn the inherent pattern in water quality 
data. The activation function of all nodes uses the inputs 
as a weighted sum to generate the output. The ANN 
model can be applied to various purposes, including 
time series prediction. When dealing with inherent 
temporal dependencies and long-term memory, more 
sophisticated methods like RNN and LSTM are required. 
Mathematically, the model is divided into two parts, 
including the input to hidden and the hidden to output.
Input to hidden state:

( )( )11   .             (Output fromhiddenlayyer H f W X b= = +            (1 a)

Where f is the activation function for the hidden layer, 
1W  is a weighted matrix for input to the hidden layer, ( )1b  

is the bias vector for the hidden layer, and X is the input 
vector.
Hidden to output state:

( )( )22 .                      Output vector f W H b= +                  (1 b)

Where f is the activation function for the output layer, 
1W  is a weighted matrix for the hidden to the output layer, 
( )1b  is the bias vector for the output layer, and H is the 

output from the hidden layer.

Figure 2. The methodology of the study

Figure 3. Architecture of the ANN Model
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Recurrent Neural Network (RNN)
The RNN model has loop-type connections. It allows 
the layers to remain hidden, which acts as a memory 
for earlier input data. This earlier input data enables the 
model to extract information from previous points in the 
sequence. Due to its memory-preserving ability, the RNN 
model performs well in applications such as time series 
predictions. The RNN model was introduced to address 
the drawbacks of traditional feedforward neural networks 
while dealing with sequence data. The mathematical 
equation of the RNN model is given by.
Hidden state:

( )1                    hh t xh t hht W h W x bσ −= + +  	              (2 a)

where ht  is the result of the hidden state, hhW  is a 
weighted matrix from the previous time step, 1th −  is 
hidden state from the previous step, xhW  is a weighted 
matrix for the input at the current time step, tx  is input 
for the current time step, hb  is a bias vector for the hidden 
state, and σ  is an activation function for the hidden state.
Output calculation:

( )                                  t hy t hy W h b= Φ + 			               (2 b)

Where ty  is output at the time step t, Φ  is the activation 
function for the output, hyW  is a weighted matrix from 
the hidden to the output state, and hb  is a bias vector for 
the output state.

Long Short-Term Memory (LSTM)
LSTM is an advanced form of RNN model, introduced 
to solve the long-term dependencies problem. Due to 
self-connected recurrent pathways, LSTM can store 
and capture information from long sequences. It 
performs well in predicting time series data due to its 
robust architecture, which captures complex temporal 
relationships. Accurate water quality prediction mainly 
depends on observed data patterns. LSTM performs well 
where past observations and context have a significant 
influence on future predictions. Mathematically, it can be 
expressed as follows.

Forget State: ( )1                    n g f t f t ff W x U h bσ −= + +  (3 a)

Input Gate: ( )1                       t g i t i t ii W x U h bσ −= + +                     (3 b) 

Output Gate: ( )1                     t g o t o t oO W x U h bσ −= + + (3 c)

Output Gate: ( )1'                     t g c t c t cC W x U h bσ −= + + (3 d)
Cell State: 1 ' )                               t t t t t cC f c i C b−= + + (3 e)

Cell State: ( )1                                                 t t t th O Cσ −= 		               (3 f)

Here fW , iW , oW , cW , fU , iU , ,oU  cU  are weighted 

matrices and , , , f i o cb b b b  are biases. 

Convolutional Neural Network (CNN)
CNN is a deep learning algorithm designed for the 
automatic extraction of spatial features from structured 
data. It consists of multiple layers, including input, hidden 
(convolutional and pooling), and output, which detect 
the complex nature of data, learn features, and make 
predictions based on these features. It can be applied in 
various fields, including time series analysis, although 
image analysis is still its most common application. Time 
series forecasting tasks in water quality research can 
benefit from CNNs because they provide an appropriate 
balance between interpretability and model complexity. 
The CNN model can be mathematically shown as follows.
Convolutional Operation:

1 1 1

, , , , , ,
0 1 0

. .  .                   
M N C

i j k i mj n c m n c k k
m n c

z x w b
− − −

+ +
= = =

= +∑∑∑     (4 a)

Where , ,i j kZ  is the output feature map at position (I, j) 
for the k-th filter, ,i mj n cx + +  is the input value at position 
(i, mj + n) in the c-th channel, , , ,m n c kw  is the weight of the 
filter at the position (m, n) in the c-th channel for the k-th 
filter, kb  is a bias term for the k-th filter, M x N is the size 
of the filter, and C is the number of input channels.

Activation function:
( ) ( ), , , , , , max 0,                        i j k i j k i j ka ReLU z z= =     (4 b)

where , ,i j ka  is activation output at position (I, j) in the 
k-th feature map and , , i j kz  is the convolution output at 
position (I, j) in the k-th feature map.

Pooling Operation: ( ) ( ), , , , ,                           i j k i mj n km n PxQp max a +∈=     (4 c)

where i, j,kp  is the pooled output at position (I, j) in the 
k-th feature term.

Fully connected layers: , ( .  )                 I k I k I
k

y p w b=Φ +∑           (4 d)

Where Iy  is the output of the I-th neuron in the fully 
connected layer, ,I kw  is a weighted value for connecting 
k-th input to I neurons, Ib  is bias term for I-th term, and 

kp  is the flattened pool value.

Output layer:
( )
( )1

                         K

j

exp yi
ý

exp yi
=

=
∑ 		                (4 e)

where ý  is the predicted probability for i-the class, yi  
is input to the softmax function for the i-th class, and K is 
the number of classes.
Neural Network Architecture and Optimization
In this study, ANN, RNN, LSTM networks, and CNN 
were implemented using Python, utilizing the Keras and 
TensorFlow libraries. The architectures of these networks 
were carefully designed and optimized through a trial-
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and-error approach to determine the best-performing 
model for water quality prediction.

ANN
The ANN model consisted of an input layer, two 
hidden layers with 128 and 64 units, and an output layer 
employing the ReLU activation function Figure 3. The 
Adam optimizer was used to optimize the network, while 
the MSE loss function was applied to evaluate model 
performance.

RNN
The RNN model followed a similar structure, comprising 
an input layer, two recurrent hidden layers with 128 and 64 
units, and an output layer Figure 4. The Adam optimizer 
and MSE loss function were employed to optimize and 
assess the model’s performance.

LSTM Network
The LSTM model was developed for regression tasks 
and consisted of an input layer, two LSTM layers, and an 
output dense layer Figure 5. The first LSTM layer had 128 
units, followed by a 64-unit second LSTM layer with ReLU 
activation. To prevent overfitting, dropout regularization 
(0.2) was applied between the LSTM layers. The model 
was optimized using the Adam optimizer and evaluated 
with the MSE loss function.

CNN
The CNN model was tailored to capture spatial-temporal 
patterns in water quality data using Python Figure 6. It 
comprised three main layers: input, hidden, and output 
layers. The hidden layers included a convolutional layer 
with 256 units and a pooling layer with 128 units, designed 
to recognize high-order dependencies among water 
quality variables. By leveraging hierarchical patterns, the 
CNN effectively captured relationships between water 
quality parameters and improved prediction accuracy.

Optimization Strategy and Model Performance
The optimal architectures of the networks were achieved 
through a trial-and-error approach, as a method 
commonly practiced in deep learning studies. Various 
hyperparameters, including the number of layers, 
number of neurons per layer, activation functions, and 
dropout rates, were adjusted iteratively to enhance model 
accuracy.

For all models, the Adam optimizer was employed with 
a learning rate of 0.001, and Min-Max scaling was used 
for data normalization. The dataset was split into 80% 
training and 20% testing subsets. The models’ predictive 
capabilities were evaluated using statistical performance 
indicators, which demonstrated their effectiveness in 
predicting observed water quality data.

Evaluation Metrics
The statistical performance metrics, namely the coefficient 
of determination (R2), Root Mean Square Error (RMSE), 
Relative Root Mean Square Error (RRMSE), Mean 
Absolute Error (MAE), Percent Bias (PBIAS), and Nash-
Sutcliffe Efficiency (NSE), were used for evaluation of the 
models (26). 

R2 is a statistical indicator used in regression and other 
statistical models for assessing the variance in observed 
and predicted data. It indicates how well a model captures 
and predicts the observed data. Its value ranges between 
0 and 1, where a higher value shows the best fit. RMSE 
is used to measure the error between the observed and 
modeled values. Its value varies from 0 to positive infinity. 
A low RMSE indicates that the model fits well and predicts 
the observed data more accurately. RRMSE assesses the 
model’s predictive capability based on relative errors. 
MAE assesses model predictive capability based on the 
absolute error between observed and model data. PBIAS 
is a statistical indicator used for assessing overestimation 
and underestimation. Its value ranges between negative 
infinity and positive infinity. The value closer to 
indicates the best fit. NSE is widely used to assess model 

Figure 4. Architecture of the RNN Model
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performance in hydrological studies. NSE value ranges 
between −∞ and 1, where a value of 1 indicates the best fit.
 
Compromise Programming (CP)
CP is a well-established technique, which is based 
on statistical performance metrics (27). It ranks 
statistical models based on their overall performance, 
rather than considering a single statistical indicator. 
In this research, CP was used to rank deep learning 
models. Statistical performance indicators, namely R2, 
RMSE, RRMSE, PBIAS, MAE, and NSE, combinedly 
measure the effectiveness of deep learning models in 
predicting the observed electrical conductivity. Using 
the aforementioned statistical performance indicators, a 
specific distance metric termed as (LP) was computed in 
the context of CP (28). LP quantifies the distance between 
the actual model performance values and the ideal values 
(where the model perfectly predicts a target). The model 
having the lowest LP value is considered the best and 
optimal choice. The LP equation is as follows. 

1
Lp [ * ]^1/      n m

n
Wn Wn m

=
= −∑

Where Wn denotes the observed value of a statistical 
performance measure, and Wn* denotes the ideal value 
of the performance measure, obtained when the modeled 
output resembles the observed data. m is a parameter 
(typically m = 1m = 1 or m = 2m = 2) that controls the 
sensitivity of the metric to deviations from the ideal value.

Results 
In this study, the predictive capabilities of neural 
networks were compared based on their ability to predict 
electric conductivity. Figure 7 depicts the density and 
the summary statistics of each water quality parameter. 
The collected data, shown in Figure 7, are divided into 
two parts: training (80%) and validation (20%), and were 
analyzed using deep learning models. All the models 
performed best in the training phase, as shown in Table 1, 
but were unable to maintain the same performance in the 
testing phase. 

The ANN exhibited good predictive performance 
across various configurations. The ANN model achieved 
R2 values of 0.99 in training and 0.61 in testing, using the 
Adam optimizer with a learning rate of 0.001 and the 

Figure 5. Architecture of the LSTM Model

Figure 6. Architecture of the CNN Model
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Min-Max scaling technique (30,31). The higher R2 in the 
training phase reveals that the model closely fits the data 
pattern and precisely predicts the data in the training 
phase. However, the notable drop in R2 during the testing 
phase indicates that, due to the complex nature of the 
data, the model was unable to capture the data pattern 
and failed to maintain its superior performance during 
the testing phase. It was also noted that model accuracy 
increases with the increasing number of epochs. Since 
the ANN model is sensitive to the number of epochs, 
hyperparameter adjustment is crucial for achieving good 
results. When it came to forecasting electrical conductivity 
in surface water, the ANN proved to be a good model, 
laying the groundwork for future research. The observed 
and predicted data are visualized using a line plot, which 
separates the training and testing data with a boundary 
line, as shown in Figure 8 (a).

Figure 8 (b) shows the results of the RNN model. The 
predicted values line is very close to the observed line 
in both training and testing phases, showing the good 
performance of RNN in predicting electrical conductivity. 

The RNN model achieved an R2 value of 0.99 during 
training and 0.85 during testing, utilizing the Adam 
optimizer with a learning rate of 0.001 and the Min-
Max scaling approach (32). The higher R2 indicates that 
the model learned has the data pattern and can precisely 
predict the data in the training phase. However, the 
significant drop in R2 during the testing phase indicates 
the model’s underperformance. The underperformance of 
the ANN model in the testing phase is due to its inability 
to capture the patterns in time series data. Moreover, due 
to the vanishing gradient problem, the RNN model forgets 
information more quickly than the LSTM, which makes 
it unsuitable for handling long-term data. However, it is 
still evident that RNN is good at capturing the temporal 
dependencies of data. Particularly, the RNN model 
overweighs the ANN technique in terms of R2, especially 
in the testing phase, indicating its capability in water 
quality time series prediction. Interestingly, the model’s 
accuracy was not significantly improved by adding more 
epochs. The findings of this study reveal that the RNN 
model is adept at analyzing sequential data, which may 

Figure 7. Violin plots of water quality parameters(29)

Table 1. Comparison of Neural Networks

Model
Training Testing

R2 RMSE RRMSE PBias MAE NSE R2 RMSE RRMSE PBias MAE NSE

ANN 0.9999 0.00000004 0.00000016 -0.00000045 0.00000003 0.999999 0.614569 0.2116272 0.620830 8.84698 0.155782 0.614569

RNN 0.9998 0.002873 0.01308866 0.093960 0.001964 0.999828 0.856386 0.1291801 0.378963 -10.16024 0.104640 0.856386

LSTM 0.9974 0.011122 0.05065811 -0.025626 0.006209 0.997433 0.944757 0.0801188 0.235036 -7.562904 0.066148 0.944757

CNN 0.9921 4.284229 0.01110000 -0.000600 3.000039 0.992126 0.938567 16.708400 0.041400 -0.004200 12.38479 0.950319
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aid in water quality management. 
The LSTM method is more sophisticated in predicting 

electrical conductivity compared to other machine 
learning methods. The LSTM method performed well 
during both the training (0.99) and testing (0.94) phases 
(33). The performance of the LSTM model is primarily 
attributed to its ability to capture long-range correlations 
in water quality data. The exceptional predictive 
performance of the LSTM model provides insight into the 
application of neural network techniques in water quality 
prediction (34). The (c) part of Figure 8 shows the actual 
vs predicted data of the LSTM model. The predicted data 
line is just above the actual data line in both training and 
testing phases. 

The CNN model is placed in the last position due to its 
high error terms, in contrast to other machine learning 
models, making it unsuitable for predicting electrical 
conductivity. As the models are better at capturing the 
local patterns rather than the long-term data. Therefore, 
they achieved a higher R2 of 0.99 in the training phase 

and 0.93 in the testing phase. However, due to higher 
values of other error metrics such as RMSE and MAE, it 
could not maintain a higher ranking. The CNN model’s 
performance did not improve despite increasing the 
number of epochs. The (d) part of Figure 8 presents a 
comparison of actual vs predicted data of the CNN model. 

Scattered plots also visualize the relationship between 
the actual and predicted data. The dotted points in all the 
scattered plots, as shown in Figure 9, compare the actual 
values with the predicted values. In the 1st two plots of 
ANN and RNN, most of the points are closely aligned 
with the reference line, but some of the points are still 
declining from the line. This shows that these models 
are predicting accurately but not perfectly. In the 3rd plot 
of the CNN model, the points exhibit a small deviation 
from the reference line, indicating its limited ability to 
predict. In the last plot of the LSTM model, all the points 
are closely following the reference line, indicating a strong 
ability to capture the time series. 

Figure 8. Training and testing of deep learning models
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Models ranking via compromise programming
The statistical models cannot be ranked based on a 
single statistical indicator, because some models have 
higher R2 values in both the training and testing phases, 
which is evidence of better performance; however, 
the same model may have higher other error metrics, 
leading to weaker performance. Therefore, the statistical 
performance indicators were merged to rank ANN, RNN, 
LSTM, and CNN models via compromise programming 
(35). The LSTM model ranked first as it excels other 
competing models in predicting electrical conductivity 
(36). The RNN, ANN, and CNN models ranked 2nd, 3rd, 
and 4th, respectively. The ranking of these techniques 
is represented by Table S1. The training, testing, and 
regression plots of these top-ranked models are shown 
in Figure 9 respectively. This comprehensive analysis, 
guided by compromise programming, underscores the 
importance of considering a broad range of indicators and 
scenarios when assessing the feasibility of neural network 
models for predicting electrical conductivity.

Discussion
The study focused on predicting the electric conductivity of 
water at River Bara, Khyber Pakhtunkhwa (KP), Pakistan, 

using advanced machine learning models. Water quality 
parameters are used as input and processed through 
machine learning models. The results were obtained in 
the form of statistical indicators, including R2, RMSE, 
RRMSE, PBias, and NSE, as shown in Table 1. As a single 
statistical indicator cannot describe the performance of a 
statistical model, a comprehensive description requires 
an assessment of the overall performance of the model. 
Therefore, CP is an ideal technique for evaluating a model 
based on multiple conflicting criteria. Here, the overall 
performance of these models was assessed by using 
compromise programming. 

The results demonstrate that all the models performed 
well, showing their potential ability for real-world 
applications. The LSTM model performed well in 
comparison to other techniques, as evident from its 
highest R2 value of 0.99 during training and 0.94 during 
the testing phase (37). The superiority of the LSTM model 
is attributed to its ability to capture the complex patterns 
and time series dependencies in water quality data (38). 
Additionally, the LSTM model has its unique architecture 
with memory cells and a gated mechanism, which enabled 
it to capture the data pattern effectively and to avoid the 
overfitting issues.

Figure 9. Observed vs predicted data of deep learning models
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These properties of the LSTM model make it more 
suitable for predicting electric conductivity. However, 
the other models, such as ANN, RNN, and CNN, were 
also better in the training phase and learned the complex 
nature of data easily. But at the testing stage, they failed 
due to the lack of an advanced memory mechanism and 
other problems like the vanishing gradient problem, 
instability of handling temporal dependencies, and 
sensitivity to noise. The other models were better in the 
training but failed to maintain their superior position in 
the testing phase, even though at higher epochs, due to 
their lower capturing capability than LSTM. The LSTM 
model captured the data pattern more precisely than other 
models at low epochs. A comprehensive comparison 
of these machine learning models electric on electric 
conductivity prediction clearly highlighted the cutting-
edge ability of the LSTM model in handling complex 
and non-linear data relationships. A key strength of this 
research is to incorporate multiple input parameters, 
including PH, Ca, Mg, Na, PPM, Electric Conductivity, 
HCO3, Temperature, Cl, Co3, and SOR. This approach 
provides a historical understanding of water quality 
parameters. 

The findings of the study perfectly align with previous 
studies that have consistently shown the outperformance 
of the LSTM model over other models in environmental 
forecasting. In 2023, Wu et al conducted a study on water 
quality prediction by Autoregressive (AR) and LSTM 
models and proposed that LSTM has better performance 
than the AR model in predicting long-term data (39). 
Similarly, Abbas et al utilized simple LSTM and HRU-
based LSTM models for surface and sub-surface flow and 
concluded better results from the simple LSTM model 
(40). Dtissibe et al forecasted floods in the Far-North 
region of Cameroon in 2024 by Machine Learning and 
Deep Learning Models and found LSTM models as better 
models than the others in flood forecasting (41). Nayan 
et al predicted water quality using LSTM model and 
achieved better results (42). A study conducted by Li et al 
in 2023 on water quality in the Haihe River basin showed 
that the LSTM is an efficient model in water quality 
prediction (43).
 
Implications for water quality management
The study is conducted for River Bara at Jhansipost 
Station, but it applies to all the water bodies and regions 
having the same hydrological and environmental 
conditions. The adopted methodology, including 
statistical methods such as ANN, RNN, LSTM, and 
CNN with water quality parameters, is more flexible and 
versatile. These water quality parameters are universal, 
making the approaches applicable to worldwide water 
bodies. However, the ranking order of these models can 
be changed with different regions because it also depends 
on the data pattern. Furthermore, the research has 

important implications for water quality management. 
The findings suggest that water quality modeling can 
be improved using neural network models, specifically 
the LSTM technique, which has demonstrated excellent 
performance in predicting electrical conductivity. The 
LSTM models can predict pollution levels, enabling the 
regulators to implement stricter controls during high-risk 
periods. It can also support an early warning system for 
rivers to control pollution. Furthermore, the model can 
predict future water quality precisely based on climate 
change. Precise water quality prediction can help in 
developing proactive management strategies. Water 
quality prediction can help us in the formulation of water 
policy.

LSTM is the best model in predicting long-term time 
series data, but it still faces some challenges in capturing 
noise in small datasets with many trainable parameters. 
Its effectiveness is strongly dependent on the dataset size. 
The insufficient datasets can lead to overfitting. Moreover, 
due to its sequential nature and intricate architecture, 
it has significant computational complexity, leading to 
higher training time. 

Conclusion
The study investigated four neural networks, ANN, RNN, 
LSTM, and CNN, for predicting the electric conductivity 
of surface waters at Bara River, Pakistan. The performance 
of these techniques was assessed using statistical 
indicators R2, RMSE, RRMSE, MAE, NSE, and PBIAS. 
The LSTM model outperformed other techniques in 
predicting electrical conductivity based on the highest R2 
value and negligible RMSE value during the training and 
testing phases. This study has many practical implications 
for water quality management, such as proactive water 
quality management and well-informed decision-
making. Following that, research should focus on ways to 
improve these models even further by experimenting with 
different features and hyperparameter combinations. The 
generalizability of the models could be improved even 
further by expanding the dataset to include a wider range 
of environmental and geographical variables.
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