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Abstract

Background: Air pollution, primarily due to air particulates like PM10 and PM2.5, causes several
respiratory health problems. Accurate forecasting of particulate matter concentration is crucial for
managing complex and nonlinear data, allowing timely interventions for early warning systems and air
pollution control. The study aimed to develop reliable machine learning models for forecasting PM2.5
and PM10 concentrations, providing actionable insights for air quality management and public health.
Methods: Despite challenges with unusual patterns and abrupt changes, the models achieved high
accuracy, with R” values exceeding 0.96 and low RMSE values. MLP outperformed the RF and XGB
models for both PM2.5 and PM10 predictions. MLP-based stacking models further enhanced prediction
accuracy, achieving the lowest RMSE and highest R? values. For PM10, the weighted average approach
provided better performance, striking an optimal balance between the different models’ contributions.
Results: Despite unusual patterns and rapid jerks, our models had the highest R* (>0.96) and lowest
RMSE values. MLP outperformed the RF and XGB models for both pollutants. It improves the PM2.5
concentration predictions of stacking models, notably those using MLP as the meta-learner. MLP-based
stacking yielded the lowest error values. The weighted average strategy improved the PM10 performance
more than the stacking models and provided a better balance between the model contributions.
Conclusion: Ensemble models achieved enhanced predictive accuracy by emphasizing the importance
of selecting machine learning models and stacking methods based on air contaminants and data
features, which is a crucial aspect of air quality management and public health.
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Introduction

Air pollution is a global health issue, causing major
health problems such as asthma, heart attacks, lung
cancer, acute bronchitis, and respiratory and heart-
related difficulties. Primary causes include carbon
monoxide (CO), nitrogen dioxide (NO,), sulfur dioxide
(S0O,), ozone (O,), and particulate matter (PM2.5 and
PM10). These tiny particles, 30 to 35 times smaller than
human hairs, can cause breathing and cardiac difficulties,
leading to death in critical situations (1). The World
Health Organization (WHO) reports that tiny particles
in contaminated air cause around seven million deaths
annually (2). Atmospheric particulate matter comprises
a varied collection of particles derived from chemical
and biological sources, which may profoundly affect the
health of people and animals (3). Particulate matter is
emitted from various sources, including vehicle exhaust
fumes, power plants, fossil fuel combustion, agricultural
pesticides, natural dust, and industrial facilities (4). Rapid
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urbanization and industries are causing an increase in
air pollution, mainly in metropolitan cities (5). India, for
example, is the third most polluted country with an annual
average of 54.4 pg/m?® more than 10 times the WHO
PM2.5 yearly standards. According to the Lancet report,
roughly 1.6 million people in India died in 2019 because
of air pollution from both home and ambient sources (6).
Delhi is the second-most polluted city in India with an
annual PM2.5 mean of 54 ug/m’ (7). Accurate prediction
of particulate matter, including PM2.5 and PM10 levels,
is essential for public health strategy and pollution
management initiatives. This study aimed to predict daily
PM2.5 and PM10 concentrations in Delhi using advanced
models of machine learning and ensemble approaches to
enhance prediction accuracy.

Theliteraturereviewbelowincludesavarietyofapproaches
for forecasting various air pollutant concentrations. Some
methodologies incorporated explanatory variables, whereas
others used univariate models.
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Traditional time-series models, such as autoregressive
integrated moving average (ARIMA), seasonal
autoregressive integrated moving average (SARIMA),
exponential smoothing, and Holt-Winters models,
produce inaccurate findings for environmental
variables with nonlinearity, variability, and complicated
seasonality. Liu and You (8) implemented ARIMA and
three-layer neural network models to forecast Beijing’s
air quality index over long and short terms. However, the
ARIMA model could not capture nonlinear relationships
in the dataset. Bhatti et al. (9) utilized the SARIMA model
to predict the monthly mean PM2.5 and PM10 levels
in Lahore; however, the model failed to yield satisfying
results due to the enormous amount of data with
significant seasonality and non-stationarity.

Mani et al. (10) proposed that multilinear regression
and ARIMA models worked well in forecasting the
daily air quality index (AQI) because the variables’
relationships are linear. Goyal et al. (11) used a multiple
linear regression model to forecast PM2.5 and NOx levels
in three separate Jaipur sites; nonetheless, the model
produced adequate results after eliminating outliers from
the data. Ventura et al. (12) employed the ANN and
Holt-Winter models to forecast PM2.5 in three distinct
locations in Brazil: rural, urban, and industrial. The ANN
model produced consistent output in three regions and
even enhanced performance after adding meteorological
factors. Hasnain et al. (13) examined three distinct time
series models, ARIMA, RF, and Prophet, for forecasting
the daily mean of PM2.5 levels in multiple Chinese cities
using five years of daily data. The RF model outperformed
the other two models, whereas the ARIMA model failed
to perform better due to the high unpredictability and
complexity of the environmental variables.

Kumar et al. (14) proposed ET (extra trees)-AdaBoost,
an ensemble technique for predicting PM2.5 levels based
on two years of daily data from Delhi. The proposed
model outperformed existing ML models because it
combined the benefits of extra trees and AdaBoost to
provide accurate and resilient results. Yin et al. (15)
combined four different models, cluster linear regression,
long-term MLP, Fourier series descriptor, and short-term
MLP, to combine long-term and short-term capabilities
for forecasting PM2.5 using 12 years of massive data from
Puli township in Taiwan, which contains meteorological,
periodic, and other regressive variables related to
PM2.5. The combination of these models presents
certain challenges, but it produces better results than the
individual approaches.

Danesh Yazdi et al. (16) suggested an ensemble model
for forecasting PM2.5 levels based on nine years of daily
data from Greater London that included three machine
learning models (ML): RF, gradient boosting machine,
and k-nearest neighbors. The ensemble technique is
limited when handling high-variability data, but it

performs better than the individual models. Satish et al.
(17) used an ANN-based ensemble model with machine
learning models to estimate stream water quality in
India’s Godavari River basin. The stacking ANN model
outperformed the individual ML models XGB, RF, and ET
in terms of water quality parameter forecasting accuracy,
reducing overfitting, and increasing resilience.

The ML and DL models have improved significantly in
predicting air pollution, but for locations such as Delhi,
which have a high variability, more robust models are
required for long-term air quality forecasts. Traditional
statistical models fail to capture nonlinear patterns,
whereas some of the ML models fail to generalize well over
long-period data. Existing research has not sufficiently
explored hybrid stacking models, which combine
multiple ML and DL techniques to solve the problem.
This study aimed to bridge this gap by implementing
innovative air quality forecasts using machine learning
models like RF and XGB, as well as deep learning models
like ANN. Moreover, this research introduces novel
hybridization techniques to improve the long-term
predictions of daily PM2.5 and PM10 concentrations.
These techniques include stacking with linear regression,
ANN, and the weighted average approach. We used
advanced hybrid models in this study to push the limits
of accuracy in forecasting such complex environmental
data, which has significant implications for public health
and policymaking in highly polluted cities like Delhi.

Materials and Methods

Data Description

This study uses air pollution measurements from several
monitoring stations in Delhi, India. Figure 1 displays the
study area map. In this study, we converted the hourly air
pollution data variables to daily data by computing the daily
average for each pollutant. This process involves adding
the hourly values for each pollutant for each day and then
dividing the total by the number of hourly measurements
for that day. This process was performed for each pollutant
variable in our dataset. The hourly air pollution data was
gathered from Kaggle between November 25, 2020, and
January 24, 2023. This dataset was freely obtained from
the following website: https://www.kaggle.com/datasets/
deepaksirohiwal/delhi-air-quality.

The conversion of hourly data to daily data is critical
for long-term analysis and visualization. As a result,
this change is critical for delivering reliable, precise, and
actionable information about air pollution and its impact
on human health and the environment. The revised data
were divided into two sections: training and testing data.
The training data are used to train the models, while the
testing data are utilized to evaluate them. The training data
were acquired from November 25, 2020, to November 5,
2022. On the other hand, the testing data ranges from
November 6, 2022, to January 24, 2023.

N
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Figure 1. Study area map of Delhi, located in India

Methodology

This section presents a rigorous prediction methodology
for air-quality evaluation, with an emphasis on specific
matter concentrations, particularly PM2.5 and PMI0.
The methodology includes a multi-stage modeling
strategy that uses various machine learning approaches to
improve forecast accuracy and dependability.

Initially, we suggested three machine learning
prediction models for PM2.5 and PMI10 variables:
Multilayer perceptron neural network (MLP), random
forest (RF), and extreme gradient boosting (XGB). In
the second step, a successful method known as stacking
is used for the following initial predictions: This includes
developing the hybrid model with different strategies
that combine the strengths of the three base models. The
proposed stacking model is MLP-RF-XGB. In the last
stage, we extracted meta-features from both base models
used in the hybrid model. In this case, the meta-model is
linear regression and MLP, which successfully integrates
predictions from the basic models. Finally, we used the
ensemble model weighted average to forecast PM2.5 and
PM10 concentrations. The flow of the work is shown in
Figure 2.

Multilayer Perceptron Neural Networks (MLPS)

Artificial neural networks (ANNs) are sophisticated forms
of artificial intelligence (AI). These ANNs are critical
in time series forecasting because they produce reliable
results. The ANN model is a popular intelligence model
used in several domains, including time series modeling
and forecasting. ANN models are popular because of
their ability to extrapolate data without assuming a
certain model structure (18). When standard linear
models struggle to grasp the intricacies and nonlinear
relationships in the data at hand, ANN models are

employed to overcome the problems and produce more
accurate findings than traditional time series models.
ANN contains several models, but the single-hidden-
layer multilayer perceptron is most commonly employed
in time series modeling. A layer is created by joining two
or more neurons, and a network can be made up of one
or more layers of neurons linked together by a connection
strength known as weight (19).

In general, MLPS has three layers: input, output,
and hidden. In the input layer, the number of nodes
represents the number of features or lagged observations
used for prediction. The input layer sends data to the
next layer without completing any actions. The hidden
layer is located between the input and output layers. The
proposed method collects input data from all nodes in
the input layer and calculates the weighted total of these
inputs. The obtained total is then processed through
the activation function, introducing nonlinearity into
the model. MLPS has one or more hidden layers that
convert the input data into a more acceptable format for
prediction by the output layer. Finally, the output layer
has a single neuron that produces the regression results.
In the proposed model, the hidden layer employs the
rectified linear unit (ReLU) activation function, and
regularization techniques, such as L2 regularization, are
utilized to prevent overfitting. The model is trained using
backpropagation with an optimizer such as Adam, and
its performance is assessed using regression-appropriate
metrics. Figure 3 shows the architecture of an MLPS.

Random Forest (RF)

RFisatype of ML model. Itis an embedded learning-based
prediction approach that incorporates several decision
trees. It can be used for data mining in machine learning
frameworks. RFs are typically employed for classification,
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regression, and forecasting. RFs perform well for time
series forecasting, even when the data contains non-linear
connections (20). For time series forecasting, the RF
first generates a lag variable, which represents prior time
steps, utilizes it as input, and then learns the time series
pattern from it. To improve the model’s performance,
feedforward or other standard approaches, such as k-fold
cross-validation, will be applied. After training the model,

the next step is to make predictions based on the average
forecasts of the various trees in the ensemble.

Extreme Gradient Boosting (XGB)

XGB is one of the most powerful gradient-boosting
machine learning techniques, noted for its efficiency and
high performance when applied to structured data, like
time series data. It can be used for both classification and
regression (21). XGB works well with temporal data, and
when we use this technique with time-series data, we must
first convert it into a format suited for supervised learning.
This involves analyzing a dataset in which prior time steps
are predictors of future values. The primary purpose of
XGB is to assess prediction accuracy by building on
the information gained from prior weak learners and
adding new weak learners that are specifically designed to
address and correct residual errors (22). In addition, XGB
employs both regularizations, such as L1 and L2, to avoid
overfitting and allows parallel processing to considerably
accelerate estimations. The proposed method provides
several hyperparameters that may be fine-tuned to
improve performance, including the number of trees, tree
depth, and learning rate.

n
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Proposed Stacking Models

The ensemble technique is an ML strategy that combines
many model predictions to provide superior outcomes
when compared to individual strategies (18). Ensemble
approaches include stacking. This is achieved by
combining the many model predictions from the same
dataset using a meta-model that incorporates meta-
features from base models. In this study, three distinct
metamodels, such as linear regression, MLP stacking, and
weighted average, were utilized to aggregate predictions
from base models, such as MLP, RF, and XGB.

Stacking with linear regression: Stacking using linear
regression is an effective strategy that integrates meta-
features from base models, such as MLP, RF, and XGB
models, and learns to weight these features to minimize
total prediction error on training data. It is posited that
the best combination of base model predictions may be
conveyed via a linear relationship.

Stacking with MLP: Stacking using MLP is a strong
approach that can produce more robust predictions
because it captures non-linear interactions and allows for
hyperparameter adjustment. MLP consists of an input
layer that sends nodes or previously lagged values to the
next layer, as well as one or more hidden layers that alter
the input data. The hidden layer calculates the weighted
total of these inputs and runs it through the activation
function, introducing nonlinearity into the model. The
final prediction results are provided by the output layer,
which has a single neuron for the regression work. The
MLP can grasp complicated patterns in meta-features,
thereby minimizing the total prediction error.

Weighted average ensemble: To improve the
performance of a weighted average ensemble, compute a
weighted average of all base model predictions and score
them according to their performance, such as RMSE on
testing data. The weights in the final ensemble are inversely
proportional to the RMSE of each model. Models with
lower RMSE values provide more weight, whereas models
with larger RMSE values give less weight. By employing
this stacking method, we aim to capitalize on the benefits
of several techniques, such as ANN, RF, and XGB, to
increase the resilience and accuracy of final predictions.

Evaluation Metrics

In this study, we employed three metrics to evaluate and
compare the performance of various models. Root mean
square error (RMSE), mean absolute error (MAE) (23),
and R’ coefficient of determination. The formulae for
these measures are defined as follows:

1&, .
RMSE = ;Z(y,«—y,«)z
i=1
1&.
MAE=—3 [~y

i=1

Results
Summary statistics for PM2.5 and PM10 data reveal a
concerning trend in air quality, with a daily mean of
237.72 pug/m’ for PM2.5 and 299.39 pg/m® for PM10 levels
significantly exceeding the WHO guidelines standard. We
found that PM2.5 concentrations were 15 times higher,
and PM10 levels exceeded the standard by 6.5 times the
WHO daily guidelines limits. These elevated pollution
levels pose serious health risks to the population in the
city. Furthermore, the notable standard deviations of
180.30 pg/m’ for PM2.5 and 206.69 pg/m’® for PM10
indicate considerable variability and potential seasonal
fluctuations in air quality, emphasizing the need for
targeted interventions. Continuous monitoring and
research will be essential to track progress and adapt
advanced strategies to improve air quality effectively.
This section highlights the results of predicted values
for PM2.5 and PM10 from individual and ensemble
models using MLP, RF, and XGB.

Results of Individual Models
In this study, 90% of the data is used for training, while the
remaining 10% (80 days) is used for testing to anticipate
PM2.5 and PM10 air particle concentrations. First, the
three individual models, such as MLP, RF, and XGB,
were trained. To evaluate the performance of these three
individual ML approaches, performance metrics such as
RMSE, MAE, and R* were utilized, as shown in Table 1.

The ANN model was initially trained using the
MLPRegressor from the Scikit-Learn Python module.
GridSearchCV was used to determine the best parameters
and models based on cross-validation performance.
After tuning the hyperparameters, a higher R? value was
obtained for both the PM2.5 and PM10 parameters, with
an alpha of 0.001, two hidden layers of sizes 100 and 50,
and a maximum of 1000 iterations. The MLP model fared
better on PM10 than on PM2.5. The RMSE for PM10 was
0.9906, whereas that for PM2.5 was 0.9886.

After training the MLP model, the RF model, which
is an ensemble approach that generates many decision

Table 1. Comparison of the prediction performances of three individual
models for both Particulate Matter with a diameter of 2.5 microns or less
(PM2.5) and Particulate Matter with a diameter of 10 microns or less (PM10)

Variable Model RMSE MAE R-square
MLP 17.0643 13.1255 0.9886

PM2.5 (ug/md) RF 26.4041 18.9136 0.9728
XGB 26.6033 16.3819 0.9724
MLP 18.0392 13.1632 0.9906

PM10 (ug/m?®) RF 17.4015 13.7427 0.9912
XGB 36.2245 17.4294 0.9621
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trees during training and produces mean predictions
from individual trees, was trained. The GridSearchCV
technique was used to determine ideal parameters and
models. Each combination was evaluated using 5-fold
cross-validation. After tuning the hyperparameters, the
RF model functioned admirably in terms of parameters,
with the maximum depth of each tree in the forest set to
7, the minimum number of samples necessary to divide
an internal node set to 2, and the number of trees in the
forest set to 200. These tuning parameters produced low
RMSE and high R? values for PM10 and PM2.5. Compared
with the model’s performance for PM2.5, the RF model
fitted well for PM10, with R? values of 0.9912 and 0.9728,
respectively.

To anticipate the daily average PM2.5 and PM10 levels,

we used the XGB model, an accurate gradient approach
known for its versatility and excellent performance with
time-series data. GridSearchCV was utilized to tune
the XGB model’s hyperparameters using 5-fold cross-
validation. The ideal parameters for PM2.5 are as follows:
a 0.1 learning rate, 200 trees in the forest, and a maximum
depth of 5 for each tree. The optimal PM10 parameters
were a learning rate of 0.05, 200 trees in the forest, and
a maximum depth of 5. The XGB model was trained on
training data using optimal parameters and then tested
on test data. The XGB model correctly predicted the
daily average PM2.5 and PM10 levels with R* values of
0.9728 and 0.9621, respectively. A comparison of the
actual and predicted values for both pollutants is shown
in Figures 4 and 5.

Actual vs. predicted values of the daily average PM2.5 concentration

-

1000 4

I

I

I
I
[
[}

800

600

pm2.5

400

200 -

— Actual
—-®@- ANN Predicted
RF Predicted
-®- XGBoost Predicted

L hE
“J\j’\

g'j
°
R e

:\"'3 N :\‘7
¥ A)’Q\/ 3’6\/
aE 9
P ®

Figure 4. Comparison of PM2.5 Forecasting Results: ANN(MLP), RF, and XGB vs. Actual

Actual vs. predicted values of the daily average PM10 concentration

1200 | it

1000 E

— Actual
-®- ANN Predicted
RF Predicted
-®- XGBoost Predicted

!
. 800 + II E g ||
E 600 4 i i ; 'H‘ o 'i ; { f
[ | :I% ."" e f'\ . F‘ \ f“‘l ] ‘l I
‘ i ' 4 I ¢ 1 A
rla VA Y -
: i | oy v IR
200 - t" "' R:: = ‘l V
] o “\?’ ‘6\’ >
g Y g [y &
’15;0 '1,0‘0 '19'1} ’\9{) '\9{)

Figure 5. Comparison of PM10 Forecasting Results: ANN(MLP), RF, and XGB vs. Actual

6 \ Environmental Health Engineering and Management Journal. 2025;12:1370



Sreenivasulu and Mokesh Rayalu

Results of Stacking Techniques
Three stacking approaches were used to accurately
forecast daily average PM2.5 and PM10 levels and enhance
model performance. These methods include stacking with
linear regression, the MLP regressor, and the weighted
average method. To assess the performance of these three
approaches, performance metrics such as RMSE, MAE,
and R? were utilized, as shown in Table 2. The PM2.5
findings showed that all three stacking approaches worked
remarkably well, with R? values near 0.99, indicating a high
level of accuracy when projecting daily average PM2.5
values. Among the three approaches for PM2.5, stacking
with an MLP regressor demonstrated the lowest RMSE
(16.6885) and MAE (12.975). Figure 6 compares actual
and predicted PM2.5 levels for three stacking approaches.
The anticipated values are fairly similar to the real values.
Similarly, the same stacking methods were employed to
forecast daily average PM10 levels. The evaluated metrics
are summarized in Table 2. The results revealed that all
three techniques were effective in predicting PM10 levels,
with R? values greater than 0.985. The weighted average
strategy produced the best results for PM10 prediction,
with the lowest RMSE (18.9096) and greatest R* (0.9896).
Figure 7 presents the actual and expected outcomes for the

Table 2. Comparison of the prediction performances of three ensemble
models for both Particulate Matter with a diameter of 2.5 microns or less
(PM2.5) and Particulate Matter with a diameter of 10 microns or less (PM10)

Variable Stacking Model RMSE MAE R-square
Stacking with linear regression 16.7634 13.088  0.9890
PM2'53 Stacking with MLP 16.6885 12.975  0.9891
(Hg/m?)
Weighted average 18.4221 13.2298 0.9867
Stacking with linear regression 22.2821 13.9379  0.9856
PM103 Stacking with MLP 21.1890 13.9118 0.9870
(Wg/m?)
Weighted average 18.9096 13.3324 0.9896

three stacking approaches, indicating that the predicted
values are similar to the real values. When comparing the
three stacking techniques used in this study for PM2.5 and
PM10 pollutant concentrations, it is evident that stacking
with MLP and the weighted average approach performed
marginally better than stacking using regression. The least
error values across the three models demonstrate that the
stacked models successfully capture data variability.

Discussion

We compared the accuracy of the three machine learning
models, MLP, RF, and XGB, in forecasting daily average
PM2.5 and PM10 pollutant concentrations. Each model
was finetuned using optimal hyperparameters to enhance
performance and evaluated using metrics such as RMSE,
MAE, and R? values. Table 1 provides the performance
metrics for the three models across both pollutants.

For PM2.5, the MLP model outperformed the RF and
XGB models by achieving the lowest RMSE (17.0643)
and MAE (13.1255), alongside the highest R* (0.9886).
The superior performance of the MLP model shows that
it effectively captures nonlinear patterns in air pollution
data, as shown in Figure 4, which compares actual and
predicted values for test data for three different models. For
PM10, the RF model performed marginally better with the
lowest RMSE (17.4015) and high R? (0.9912), since the RF
model effectively captured important variance, although
the MLP model showed similar strong results. Conversely,
the XGB model displayed the highest error values for both
pollutants, indicating its lower effectiveness compared to
the other two models. Figure 5 shows a comparison of the
three models for PM10 validation data.

To improve performance, we employ the stacking
models, which combine the predictions of MLP, RF,
and XGB using linear regression, MLP, and a weighted

Actual vs. Predicted Values of the Daily Average PM2.5 Concentration
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Actual vs. Predicted Values of the Daily Average PM10 Concentration

1000 -

800 4

PM10

600 I
‘ J
400 4

200 4

e

— Actual

Stacked with Linear Regression
—®- Stacked with MLP
—@- Weighted Average Predictions

.
<4 |

[ =

Date

Figure 7. Comparison of ensemble approaches predicted vs actual values for PM10

average approach. Figures 6-7 illustrates the variation
between actual and expected values for validation data
for two pollutants. The stacking methods worked well
to combine the best parts of the base models for PM2.5.
This led to better performance accuracy, especially when
MLP was used as a meta-learner, and an RMSE of 16.6885
and an R? of 0.9891 were reached. This demonstrates
that leveraging MLP in a stacking framework can
enhance the model’s ability to predict complex patterns
in pollutant concentrations. For PM10, stacking using
linear regression and MLP resulted in marginally better
results. Interestingly, the weighted average method
outperformed both stacking methods with an RMSE of
18.9096 and an R? of 0.9896. This indicates that effective
balancing of contributions from each individual model,
rather than relying heavily on a single model, can yield
better predictions in certain scenarios, especially when
predicting PM10 concentrations.

The authors retrieve the latest literature on PM2.5 and
PM10 forecasting, selecting the first seven articles based
on similar research topics, geographical contexts, and
methodological methods. The standard statistical measure
RMSE is used to evaluate the overall performance of the
developed models and comparative results are shown
in Table 3. The average RMSE values are 52.19 pug/m’
according to (24), 21.51 pg/m’ according to (25), 30.32
pg/m’ according to (26), 0.06 pug/m* according to (27),
47.36 pug/m’ according to (28), 25.75 pg/m?® according to
(29), and 36.58 pg/m® according to (30) with respect to
PM2.5. Upon examination, the suggested model attains
an average RMSE of 16.68 ug/m’. The proposed model
ranks second among eight studies in terms of predictive
accuracy. The suggested model demonstrates specific
improvements over previous approaches.

The proposed models had the highest R* (>0.96) values

Table 3. Comparative exhibitions of daily average RMSE (ug/m®) using the
proposed model with recent models applied to PM2.5 data in Delhi

Year Location Target variables Model RMSE (pg/md)
2024 Delhi PM2.5 Linear regression 52.19
2022 Delhi PM2.5 LSTM 21.51
2023 Delhi  PM25 ELM-SO hybrid 30.32
model
2024 Delhi PM2.5 and AQl  Bi-LSTM 0.06 and 0.10
2024 Delhi PM2.5 1D-CNN 47.36
2024 Delhi PM2.5 Bi-RNN 25.75
2024 Delhi PM2.5 and PM10 Five-layered ANN 36.58 and 56.4
2024 Delhi PM2.5 and PM10 Proposed model 16.68 and 18.9

and the lowest RMSE and MAE values compared to earlier
studies. This was true even though the data showed strange
patterns and sudden jumps. The results highlight that the
MLP model is highly effective for predicting PM2.5, while
the RF model excels for PM10, and stacking approaches,
especially those using MLP, can significantly improve
overall forecast accuracy. Overall, this study advances
the performance of ensemble models for predicting air
pollutant concentrations, highlighting the significance
of selecting ML models and an appropriate stacking
approach based on air pollutants and data behavior. The
enhanced performance of stacking approaches implies
that they can make more reliable predictions, which is
critical for air quality management and public health
measures. Accurate air pollution forecasts are essential
for effective air quality management, enabling timely
interventions and minimizing public health risks.

Conclusion
This study describes three separate machine learning
algorithms, MLP, RF, and XGB, as well as ensemble models
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that use stacking techniques to forecast daily average
PM2.5 and PMI10 pollution levels without requiring
exogenous factors. Despite the data’s unpredictable
oscillations, no obvious trend, and unexpected peaks, all
of the models fitted well and produced the greatest long-
term predictions with the highest R? values. Individually,
the MLP model outperformed the other two models for
both PM2.5, but RF outperformed both MLP and XGB for
PM10. Stacking with MLP and a weighted average method
outscored stacking with linear regression by a small
margin. The ensemble models improved performance and
provided more accurate results compared to individual
models. Ultimately, the neural networks achieved good
results in finding the underlying patterns in the data, and
as a metamodel, they captured nonlinear interactions
among the base models. In future studies, incorporating
additional factors like meteorological and anthropogenic
variables may further enhance the predictive power
of these models, providing even greater value for
policymakers and public health authorities.
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