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Introduction
Air pollution is a global health issue, causing major 
health problems such as asthma, heart attacks, lung 
cancer, acute bronchitis, and respiratory and heart-
related difficulties. Primary causes include carbon 
monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide 
(SO2), ozone (O3), and particulate matter (PM2.5 and 
PM10). These tiny particles, 30 to 35 times smaller than 
human hairs, can cause breathing and cardiac difficulties, 
leading to death in critical situations (1). The World 
Health Organization (WHO) reports that tiny particles 
in contaminated air cause around seven million deaths 
annually (2). Atmospheric particulate matter comprises 
a varied collection of particles derived from chemical 
and biological sources, which may profoundly affect the 
health of people and animals (3). Particulate matter is 
emitted from various sources, including vehicle exhaust 
fumes, power plants, fossil fuel combustion, agricultural 
pesticides, natural dust, and industrial facilities (4). Rapid 

urbanization and industries are causing an increase in 
air pollution, mainly in metropolitan cities (5). India, for 
example, is the third most polluted country with an annual 
average of 54.4 μg/m3, more than 10 times the WHO 
PM2.5 yearly standards. According to the Lancet report, 
roughly 1.6 million people in India died in 2019 because 
of air pollution from both home and ambient sources (6). 
Delhi is the second-most polluted city in India with an 
annual PM2.5 mean of 54 μg/m3 (7). Accurate prediction 
of particulate matter, including PM2.5 and PM10 levels, 
is essential for public health strategy and pollution 
management initiatives. This study aimed to predict daily 
PM2.5 and PM10 concentrations in Delhi using advanced 
models of machine learning and ensemble approaches to 
enhance prediction accuracy.

The literature review below includes a variety of approaches 
for forecasting various air pollutant concentrations. Some 
methodologies incorporated explanatory variables, whereas 
others used univariate models. 
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Abstract
Background: Air pollution, primarily due to air particulates like PM10 and PM2.5, causes several 
respiratory health problems. Accurate forecasting of particulate matter concentration is crucial for 
managing complex and nonlinear data, allowing timely interventions for early warning systems and air 
pollution control. The study aimed to develop reliable machine learning models for forecasting PM2.5 
and PM10 concentrations, providing actionable insights for air quality management and public health.
Methods: Despite challenges with unusual patterns and abrupt changes, the models achieved high 
accuracy, with R² values exceeding 0.96 and low RMSE values. MLP outperformed the RF and XGB 
models for both PM2.5 and PM10 predictions. MLP-based stacking models further enhanced prediction 
accuracy, achieving the lowest RMSE and highest R² values. For PM10, the weighted average approach 
provided better performance, striking an optimal balance between the different models’ contributions.
Results: Despite unusual patterns and rapid jerks, our models had the highest R2 (> 0.96) and lowest 
RMSE values. MLP outperformed the RF and XGB models for both pollutants. It improves the PM2.5 
concentration predictions of stacking models, notably those using MLP as the meta-learner. MLP-based 
stacking yielded the lowest error values. The weighted average strategy improved the PM10 performance 
more than the stacking models and provided a better balance between the model contributions.
Conclusion: Ensemble models achieved enhanced predictive accuracy by emphasizing the importance 
of selecting machine learning models and stacking methods based on air contaminants and data 
features, which is a crucial aspect of air quality management and public health.
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Traditional time-series models, such as autoregressive 
integrated moving average (ARIMA), seasonal 
autoregressive integrated moving average (SARIMA), 
exponential smoothing, and Holt-Winters models, 
produce inaccurate findings for environmental 
variables with nonlinearity, variability, and complicated 
seasonality. Liu and You (8) implemented ARIMA and 
three-layer neural network models to forecast Beijing’s 
air quality index over long and short terms. However, the 
ARIMA model could not capture nonlinear relationships 
in the dataset. Bhatti et al. (9) utilized the SARIMA model 
to predict the monthly mean PM2.5 and PM10 levels 
in Lahore; however, the model failed to yield satisfying 
results due to the enormous amount of data with 
significant seasonality and non-stationarity. 

Mani et al. (10) proposed that multilinear regression 
and ARIMA models worked well in forecasting the 
daily air quality index (AQI) because the variables’ 
relationships are linear. Goyal et al. (11) used a multiple 
linear regression model to forecast PM2.5 and NOx levels 
in three separate Jaipur sites; nonetheless, the model 
produced adequate results after eliminating outliers from 
the data. Ventura et al. (12) employed the ANN and 
Holt-Winter models to forecast PM2.5 in three distinct 
locations in Brazil: rural, urban, and industrial. The ANN 
model produced consistent output in three regions and 
even enhanced performance after adding meteorological 
factors. Hasnain et al. (13) examined three distinct time 
series models, ARIMA, RF, and Prophet, for forecasting 
the daily mean of PM2.5 levels in multiple Chinese cities 
using five years of daily data. The RF model outperformed 
the other two models, whereas the ARIMA model failed 
to perform better due to the high unpredictability and 
complexity of the environmental variables.

Kumar et al. (14) proposed ET (extra trees)-AdaBoost, 
an ensemble technique for predicting PM2.5 levels based 
on two years of daily data from Delhi. The proposed 
model outperformed existing ML models because it 
combined the benefits of extra trees and AdaBoost to 
provide accurate and resilient results. Yin et al. (15) 
combined four different models, cluster linear regression, 
long-term MLP, Fourier series descriptor, and short-term 
MLP, to combine long-term and short-term capabilities 
for forecasting PM2.5 using 12 years of massive data from 
Puli township in Taiwan, which contains meteorological, 
periodic, and other regressive variables related to 
PM2.5. The combination of these models presents 
certain challenges, but it produces better results than the 
individual approaches.

Danesh Yazdi et al. (16) suggested an ensemble model 
for forecasting PM2.5 levels based on nine years of daily 
data from Greater London that included three machine 
learning models (ML): RF, gradient boosting machine, 
and k-nearest neighbors. The ensemble technique is 
limited when handling high-variability data, but it 

performs better than the individual models. Satish et al. 
(17) used an ANN-based ensemble model with machine 
learning models to estimate stream water quality in 
India’s Godavari River basin. The stacking ANN model 
outperformed the individual ML models XGB, RF, and ET 
in terms of water quality parameter forecasting accuracy, 
reducing overfitting, and increasing resilience.

The ML and DL models have improved significantly in 
predicting air pollution, but for locations such as Delhi, 
which have a high variability, more robust models are 
required for long-term air quality forecasts. Traditional 
statistical models fail to capture nonlinear patterns, 
whereas some of the ML models fail to generalize well over 
long-period data. Existing research has not sufficiently 
explored hybrid stacking models, which combine 
multiple ML and DL techniques to solve the problem. 
This study aimed to bridge this gap by implementing 
innovative air quality forecasts using machine learning 
models like RF and XGB, as well as deep learning models 
like ANN. Moreover, this research introduces novel 
hybridization techniques to improve the long-term 
predictions of daily PM2.5 and PM10 concentrations. 
These techniques include stacking with linear regression, 
ANN, and the weighted average approach. We used 
advanced hybrid models in this study to push the limits 
of accuracy in forecasting such complex environmental 
data, which has significant implications for public health 
and policymaking in highly polluted cities like Delhi. 

Materials and Methods 
Data Description
This study uses air pollution measurements from several 
monitoring stations in Delhi, India. Figure 1 displays the 
study area map. In this study, we converted the hourly air 
pollution data variables to daily data by computing the daily 
average for each pollutant. This process involves adding 
the hourly values for each pollutant for each day and then 
dividing the total by the number of hourly measurements 
for that day. This process was performed for each pollutant 
variable in our dataset. The hourly air pollution data was 
gathered from Kaggle between November 25, 2020, and 
January 24, 2023. This dataset was freely obtained from 
the following website: https://www.kaggle.com/datasets/
deepaksirohiwal/delhi-air-quality.

The conversion of hourly data to daily data is critical 
for long-term analysis and visualization. As a result, 
this change is critical for delivering reliable, precise, and 
actionable information about air pollution and its impact 
on human health and the environment. The revised data 
were divided into two sections: training and testing data. 
The training data are used to train the models, while the 
testing data are utilized to evaluate them. The training data 
were acquired from November 25, 2020, to November 5, 
2022. On the other hand, the testing data ranges from 
November 6, 2022, to January 24, 2023.

https://www.kaggle.com/datasets/deepaksirohiwal/delhi-air-quality
https://www.kaggle.com/datasets/deepaksirohiwal/delhi-air-quality
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Methodology
This section presents a rigorous prediction methodology 
for air-quality evaluation, with an emphasis on specific 
matter concentrations, particularly PM2.5 and PM10. 
The methodology includes a multi-stage modeling 
strategy that uses various machine learning approaches to 
improve forecast accuracy and dependability.

Initially, we suggested three machine learning 
prediction models for PM2.5 and PM10 variables: 
Multilayer perceptron neural network (MLP), random 
forest (RF), and extreme gradient boosting (XGB). In 
the second step, a successful method known as stacking 
is used for the following initial predictions: This includes 
developing the hybrid model with different strategies 
that combine the strengths of the three base models. The 
proposed stacking model is MLP-RF-XGB. In the last 
stage, we extracted meta-features from both base models 
used in the hybrid model. In this case, the meta-model is 
linear regression and MLP, which successfully integrates 
predictions from the basic models. Finally, we used the 
ensemble model weighted average to forecast PM2.5 and 
PM10 concentrations. The flow of the work is shown in 
Figure 2.

Multilayer Perceptron Neural Networks (MLPS)
Artificial neural networks (ANNs) are sophisticated forms 
of artificial intelligence (AI). These ANNs are critical 
in time series forecasting because they produce reliable 
results. The ANN model is a popular intelligence model 
used in several domains, including time series modeling 
and forecasting. ANN models are popular because of 
their ability to extrapolate data without assuming a 
certain model structure (18). When standard linear 
models struggle to grasp the intricacies and nonlinear 
relationships in the data at hand, ANN models are 

employed to overcome the problems and produce more 
accurate findings than traditional time series models. 
ANN contains several models, but the single-hidden-
layer multilayer perceptron is most commonly employed 
in time series modeling. A layer is created by joining two 
or more neurons, and a network can be made up of one 
or more layers of neurons linked together by a connection 
strength known as weight (19).

In general, MLPS has three layers: input, output, 
and hidden. In the input layer, the number of nodes 
represents the number of features or lagged observations 
used for prediction. The input layer sends data to the 
next layer without completing any actions. The hidden 
layer is located between the input and output layers. The 
proposed method collects input data from all nodes in 
the input layer and calculates the weighted total of these 
inputs. The obtained total is then processed through 
the activation function, introducing nonlinearity into 
the model. MLPS has one or more hidden layers that 
convert the input data into a more acceptable format for 
prediction by the output layer. Finally, the output layer 
has a single neuron that produces the regression results. 
In the proposed model, the hidden layer employs the 
rectified linear unit (ReLU) activation function, and 
regularization techniques, such as L2 regularization, are 
utilized to prevent overfitting. The model is trained using 
backpropagation with an optimizer such as Adam, and 
its performance is assessed using regression-appropriate 
metrics. Figure 3 shows the architecture of an MLPS.

Random Forest (RF)
RF is a type of ML model. It is an embedded learning-based 
prediction approach that incorporates several decision 
trees. It can be used for data mining in machine learning 
frameworks. RFs are typically employed for classification, 

Figure 1. Study area map of Delhi, located in India
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regression, and forecasting. RFs perform well for time 
series forecasting, even when the data contains non-linear 
connections (20). For time series forecasting, the RF 
first generates a lag variable, which represents prior time 
steps, utilizes it as input, and then learns the time series 
pattern from it. To improve the model’s performance, 
feedforward or other standard approaches, such as k-fold 
cross-validation, will be applied. After training the model, 

the next step is to make predictions based on the average 
forecasts of the various trees in the ensemble.

Extreme Gradient Boosting (XGB)
XGB is one of the most powerful gradient-boosting 
machine learning techniques, noted for its efficiency and 
high performance when applied to structured data, like 
time series data. It can be used for both classification and 
regression (21). XGB works well with temporal data, and 
when we use this technique with time-series data, we must 
first convert it into a format suited for supervised learning. 
This involves analyzing a dataset in which prior time steps 
are predictors of future values. The primary purpose of 
XGB is to assess prediction accuracy by building on 
the information gained from prior weak learners and 
adding new weak learners that are specifically designed to 
address and correct residual errors (22). In addition, XGB 
employs both regularizations, such as L1 and L2, to avoid 
overfitting and allows parallel processing to considerably 
accelerate estimations. The proposed method provides 
several hyperparameters that may be fine-tuned to 
improve performance, including the number of trees, tree 
depth, and learning rate.

Figure 2. Comprehensive workflow for PM2.5 and PM10 forecasting

Figure 3. Design of a multi-layer perceptron model
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Proposed Stacking Models
The ensemble technique is an ML strategy that combines 
many model predictions to provide superior outcomes 
when compared to individual strategies (18). Ensemble 
approaches include stacking. This is achieved by 
combining the many model predictions from the same 
dataset using a meta-model that incorporates meta-
features from base models. In this study, three distinct 
metamodels, such as linear regression, MLP stacking, and 
weighted average, were utilized to aggregate predictions 
from base models, such as MLP, RF, and XGB.

Stacking with linear regression: Stacking using linear 
regression is an effective strategy that integrates meta-
features from base models, such as MLP, RF, and XGB 
models, and learns to weight these features to minimize 
total prediction error on training data. It is posited that 
the best combination of base model predictions may be 
conveyed via a linear relationship.

Stacking with MLP: Stacking using MLP is a strong 
approach that can produce more robust predictions 
because it captures non-linear interactions and allows for 
hyperparameter adjustment. MLP consists of an input 
layer that sends nodes or previously lagged values to the 
next layer, as well as one or more hidden layers that alter 
the input data. The hidden layer calculates the weighted 
total of these inputs and runs it through the activation 
function, introducing nonlinearity into the model. The 
final prediction results are provided by the output layer, 
which has a single neuron for the regression work. The 
MLP can grasp complicated patterns in meta-features, 
thereby minimizing the total prediction error.

Weighted average ensemble: To improve the 
performance of a weighted average ensemble, compute a 
weighted average of all base model predictions and score 
them according to their performance, such as RMSE on 
testing data. The weights in the final ensemble are inversely 
proportional to the RMSE of each model. Models with 
lower RMSE values provide more weight, whereas models 
with larger RMSE values give less weight. By employing 
this stacking method, we aim to capitalize on the benefits 
of several techniques, such as ANN, RF, and XGB, to 
increase the resilience and accuracy of final predictions.

Evaluation Metrics
In this study, we employed three metrics to evaluate and 
compare the performance of various models. Root mean 
square error (RMSE), mean absolute error (MAE) (23), 
and R2 coefficient of determination. The formulae for 
these measures are defined as follows:
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Results
Summary statistics for PM2.5 and PM10 data reveal a 
concerning trend in air quality, with a daily mean of 
237.72 µg/m3 for PM2.5 and 299.39 µg/m3 for PM10 levels 
significantly exceeding the WHO guidelines standard. We 
found that PM2.5 concentrations were 15 times higher, 
and PM10 levels exceeded the standard by 6.5 times the 
WHO daily guidelines limits. These elevated pollution 
levels pose serious health risks to the population in the 
city. Furthermore, the notable standard deviations of 
180.30 µg/m3 for PM2.5 and 206.69 µg/m3 for PM10 
indicate considerable variability and potential seasonal 
fluctuations in air quality, emphasizing the need for 
targeted interventions. Continuous monitoring and 
research will be essential to track progress and adapt 
advanced strategies to improve air quality effectively.

This section highlights the results of predicted values 
for PM2.5 and PM10 from individual and ensemble 
models using MLP, RF, and XGB. 

Results of Individual Models
In this study, 90% of the data is used for training, while the 
remaining 10% (80 days) is used for testing to anticipate 
PM2.5 and PM10 air particle concentrations. First, the 
three individual models, such as MLP, RF, and XGB, 
were trained. To evaluate the performance of these three 
individual ML approaches, performance metrics such as 
RMSE, MAE, and R2 were utilized, as shown in Table 1.

The ANN model was initially trained using the 
MLPRegressor from the Scikit-Learn Python module. 
GridSearchCV was used to determine the best parameters 
and models based on cross-validation performance. 
After tuning the hyperparameters, a higher R2 value was 
obtained for both the PM2.5 and PM10 parameters, with 
an alpha of 0.001, two hidden layers of sizes 100 and 50, 
and a maximum of 1000 iterations. The MLP model fared 
better on PM10 than on PM2.5. The RMSE for PM10 was 
0.9906, whereas that for PM2.5 was 0.9886.

After training the MLP model, the RF model, which 
is an ensemble approach that generates many decision 

Table 1. Comparison of the prediction performances of three individual 
models for both Particulate Matter with a diameter of 2.5 microns or less 
(PM2.5) and Particulate Matter with a diameter of 10 microns or less (PM10)

Variable Model RMSE MAE R-square

PM2.5 (µg/m3)

MLP 17.0643 13.1255 0.9886

RF 26.4041 18.9136 0.9728

XGB 26.6033 16.3819 0.9724

PM10 (µg/m3)

MLP 18.0392 13.1632 0.9906

RF 17.4015 13.7427 0.9912

XGB 36.2245 17.4294 0.9621
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trees during training and produces mean predictions 
from individual trees, was trained. The GridSearchCV 
technique was used to determine ideal parameters and 
models. Each combination was evaluated using 5-fold 
cross-validation. After tuning the hyperparameters, the 
RF model functioned admirably in terms of parameters, 
with the maximum depth of each tree in the forest set to 
7, the minimum number of samples necessary to divide 
an internal node set to 2, and the number of trees in the 
forest set to 200. These tuning parameters produced low 
RMSE and high R2 values for PM10 and PM2.5. Compared 
with the model’s performance for PM2.5, the RF model 
fitted well for PM10, with R2 values of 0.9912 and 0.9728, 
respectively.

To anticipate the daily average PM2.5 and PM10 levels, 

we used the XGB model, an accurate gradient approach 
known for its versatility and excellent performance with 
time-series data. GridSearchCV was utilized to tune 
the XGB model’s hyperparameters using 5-fold cross-
validation. The ideal parameters for PM2.5 are as follows: 
a 0.1 learning rate, 200 trees in the forest, and a maximum 
depth of 5 for each tree. The optimal PM10 parameters 
were a learning rate of 0.05, 200 trees in the forest, and 
a maximum depth of 5. The XGB model was trained on 
training data using optimal parameters and then tested 
on test data. The XGB model correctly predicted the 
daily average PM2.5 and PM10 levels with R2 values of 
0.9728 and 0.9621, respectively. A comparison of the 
actual and predicted values for both pollutants is shown 
in Figures 4 and 5.

Figure 4. Comparison of PM2.5 Forecasting Results: ANN(MLP), RF, and XGB vs. Actual

Figure 5. Comparison of PM10 Forecasting Results: ANN(MLP), RF, and XGB vs. Actual
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Results of Stacking Techniques
Three stacking approaches were used to accurately 
forecast daily average PM2.5 and PM10 levels and enhance 
model performance. These methods include stacking with 
linear regression, the MLP regressor, and the weighted 
average method. To assess the performance of these three 
approaches, performance metrics such as RMSE, MAE, 
and R2 were utilized, as shown in Table 2. The PM2.5 
findings showed that all three stacking approaches worked 
remarkably well, with R2 values near 0.99, indicating a high 
level of accuracy when projecting daily average PM2.5 
values. Among the three approaches for PM2.5, stacking 
with an MLP regressor demonstrated the lowest RMSE 
(16.6885) and MAE (12.975). Figure 6 compares actual 
and predicted PM2.5 levels for three stacking approaches. 
The anticipated values are fairly similar to the real values.

Similarly, the same stacking methods were employed to 
forecast daily average PM10 levels. The evaluated metrics 
are summarized in Table 2. The results revealed that all 
three techniques were effective in predicting PM10 levels, 
with R2 values greater than 0.985. The weighted average 
strategy produced the best results for PM10 prediction, 
with the lowest RMSE (18.9096) and greatest R2 (0.9896). 
Figure 7 presents the actual and expected outcomes for the 

three stacking approaches, indicating that the predicted 
values are similar to the real values. When comparing the 
three stacking techniques used in this study for PM2.5 and 
PM10 pollutant concentrations, it is evident that stacking 
with MLP and the weighted average approach performed 
marginally better than stacking using regression. The least 
error values across the three models demonstrate that the 
stacked models successfully capture data variability.

Discussion
We compared the accuracy of the three machine learning 
models, MLP, RF, and XGB, in forecasting daily average 
PM2.5 and PM10 pollutant concentrations. Each model 
was finetuned using optimal hyperparameters to enhance 
performance and evaluated using metrics such as RMSE, 
MAE, and R2 values. Table 1 provides the performance 
metrics for the three models across both pollutants. 

For PM2.5, the MLP model outperformed the RF and 
XGB models by achieving the lowest RMSE (17.0643) 
and MAE (13.1255), alongside the highest R2 (0.9886). 
The superior performance of the MLP model shows that 
it effectively captures nonlinear patterns in air pollution 
data, as shown in Figure 4, which compares actual and 
predicted values for test data for three different models. For 
PM10, the RF model performed marginally better with the 
lowest RMSE (17.4015) and high R2 (0.9912), since the RF 
model effectively captured important variance, although 
the MLP model showed similar strong results. Conversely, 
the XGB model displayed the highest error values for both 
pollutants, indicating its lower effectiveness compared to 
the other two models. Figure 5 shows a comparison of the 
three models for PM10 validation data.

To improve performance, we employ the stacking 
models, which combine the predictions of MLP, RF, 
and XGB using linear regression, MLP, and a weighted 

Table 2. Comparison of the prediction performances of three ensemble 
models for both Particulate Matter with a diameter of 2.5 microns or less 
(PM2.5) and Particulate Matter with a diameter of 10 microns or less (PM10)

Variable Stacking Model RMSE MAE R-square

PM2.5 
(µg/m3)

Stacking with linear regression 16.7634 13.088 0.9890

Stacking with MLP 16.6885 12.975 0.9891

Weighted average 18.4221 13.2298 0.9867

PM10 
(µg/m3)

Stacking with linear regression 22.2821 13.9379 0.9856

Stacking with MLP 21.1890 13.9118 0.9870

Weighted average 18.9096 13.3324 0.9896

Figure 6. Comparison of ensemble approaches predicted vs actual values for PM2.5
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average approach. Figures 6-7 illustrates the variation 
between actual and expected values for validation data 
for two pollutants. The stacking methods worked well 
to combine the best parts of the base models for PM2.5. 
This led to better performance accuracy, especially when 
MLP was used as a meta-learner, and an RMSE of 16.6885 
and an R2 of 0.9891 were reached. This demonstrates 
that leveraging MLP in a stacking framework can 
enhance the model’s ability to predict complex patterns 
in pollutant concentrations. For PM10, stacking using 
linear regression and MLP resulted in marginally better 
results. Interestingly, the weighted average method 
outperformed both stacking methods with an RMSE of 
18.9096 and an R2 of 0.9896. This indicates that effective 
balancing of contributions from each individual model, 
rather than relying heavily on a single model, can yield 
better predictions in certain scenarios, especially when 
predicting PM10 concentrations.

The authors retrieve the latest literature on PM2.5 and 
PM10 forecasting, selecting the first seven articles based 
on similar research topics, geographical contexts, and 
methodological methods. The standard statistical measure 
RMSE is used to evaluate the overall performance of the 
developed models and comparative results are shown 
in Table 3. The average RMSE values are 52.19 µg/m3 
according to (24), 21.51 µg/m3 according to (25), 30.32 
µg/m3 according to (26), 0.06 µg/m3 according to (27), 
47.36 µg/m3 according to (28), 25.75 µg/m3 according to 
(29), and 36.58 µg/m3 according to (30) with respect to 
PM2.5. Upon examination, the suggested model attains 
an average RMSE of 16.68 µg/m3. The proposed model 
ranks second among eight studies in terms of predictive 
accuracy. The suggested model demonstrates specific 
improvements over previous approaches.

The proposed models had the highest R2  (> 0.96) values 

and the lowest RMSE and MAE values compared to earlier 
studies. This was true even though the data showed strange 
patterns and sudden jumps. The results highlight that the 
MLP model is highly effective for predicting PM2.5, while 
the RF model excels for PM10, and stacking approaches, 
especially those using MLP, can significantly improve 
overall forecast accuracy. Overall, this study advances 
the performance of ensemble models for predicting air 
pollutant concentrations, highlighting the significance 
of selecting ML models and an appropriate stacking 
approach based on air pollutants and data behavior. The 
enhanced performance of stacking approaches implies 
that they can make more reliable predictions, which is 
critical for air quality management and public health 
measures. Accurate air pollution forecasts are essential 
for effective air quality management, enabling timely 
interventions and minimizing public health risks. 

Conclusion 
This study describes three separate machine learning 
algorithms, MLP, RF, and XGB, as well as ensemble models 

Figure 7. Comparison of ensemble approaches predicted vs actual values for PM10

Table 3. Comparative exhibitions of daily average RMSE (μg/m3) using the 
proposed model with recent models applied to PM2.5 data in Delhi

Year Location Target variables Model RMSE (µg/m3)

2024 Delhi PM2.5 Linear regression 52.19

2022 Delhi PM2.5 LSTM 21.51 

2023 Delhi PM2.5 ELM-SO hybrid 
model 30.32

2024 Delhi PM2.5 and AQI Bi-LSTM 0.06 and 0.10

2024 Delhi PM2.5 1D-CNN 47.36

2024 Delhi PM2.5 Bi-RNN 25.75

2024 Delhi PM2.5 and PM10 Five-layered ANN 36.58 and 56.4

2024 Delhi PM2.5 and PM10 Proposed model 16.68 and 18.9
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that use stacking techniques to forecast daily average 
PM2.5 and PM10 pollution levels without requiring 
exogenous factors. Despite the data’s unpredictable 
oscillations, no obvious trend, and unexpected peaks, all 
of the models fitted well and produced the greatest long-
term predictions with the highest R2 values. Individually, 
the MLP model outperformed the other two models for 
both PM2.5, but RF outperformed both MLP and XGB for 
PM10. Stacking with MLP and a weighted average method 
outscored stacking with linear regression by a small 
margin. The ensemble models improved performance and 
provided more accurate results compared to individual 
models. Ultimately, the neural networks achieved good 
results in finding the underlying patterns in the data, and 
as a metamodel, they captured nonlinear interactions 
among the base models. In future studies, incorporating 
additional factors like meteorological and anthropogenic 
variables may further enhance the predictive power 
of these models, providing even greater value for 
policymakers and public health authorities.
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