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Introduction
The human population is projected to reach nearly 9 
billion by 2050, and to meet the increasing food demand, 
agricultural production must rise significantly (1,2). 
In recent years, pest and disease control have greatly 
enhanced agricultural output (3-5). The State of Food 
and Agriculture 2023 report highlights a notable rise 
in pesticide usage, with global consumption reaching 
3.54 million tons of active ingredients in 2021, i.e., an 

11% rise over the past decade and double the amount 
since 1990 (6). While pesticides benefit human life by 
improving crop yields and controlling diseases, they also 
pose health risks through occupational or environmental 
exposures. Pesticides are among the most significant 
toxic environmental contaminants worldwide. The 
agriculture sector has repeatedly warned about the 
toxic effects of excessive pesticide use on public health 
and the environment (7,8). In developing countries, 
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Abstract
Background: This study aimed to determine the spatial assessment and risk assessment of three widely 
used pesticides, chlorpyrifos (CPF), malathion, and diazinon, in the tap water distribution network and 
surface water of Ardabil Province, northwest Iran.
Methods: Sampling was conducted at 41 points in the water distribution network and 30 surface water 
points. Pesticide values were detected by gas chromatograph-flame ionization detector (GC-FID) after 
solid-phase extraction.
Results: The ranking of pesticide compounds in tap water was CPF > malathion > diazinon. The mean 
concentrations of CPF, malathion, and diazinon in surface water were found to be 0.006, 0.013, and 
0.003 mg/L, respectively. The highest pesticide concentrations were detected in the northeast region. 
CPF concentrations exceeded the maximum concentration level (MCL) in 7% of tap water samples.
Conclusion: Based on USEPA standards, the average non-carcinogenic health risks from exposure 
to pesticides through water consumption remained within the acceptable limits, with a hazard index 
(HI) below 1 (HI < 1 indicates “acceptable risk” per USEPA). Sensitivity analysis indicated that CPF 
concentration and the exposure duration to malathion had the most significant influence on chronic 
daily intake (CDI) and potential noncancer health effects. Although pesticide levels in drinking water 
mostly stayed within safe limits, concentrations in the northern region exceeded permissible levels. 
Therefore, further efforts are essential to regulate pesticide contamination and reduce related health 
risks in the future.
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pesticide poisoning incidents are frequent due to rising 
consumption. Chronic exposure to pesticides can impair 
organ function and harm human health (9,10). Pesticide 
residues enter aquatic environments through drift, 
drainage, equipment washing, improper disposal of empty 
containers, leaching, and surface runoff. As a result, soil 
and water sources become major sinks for environmental 
pesticide residues (11,12).

Organochlorine pesticides (OCPs) and 
organophosphorus pesticides (OPPs) are the two main 
groups of pesticides used globally. OPPs are primarily 
used as insecticides and consist of organophosphate 
compounds. After the ban on persistent OCPs in the 
late 1990s, OPPs became a popular alternative. However, 
their high neurotoxicity and carcinogenicity, attributed 
to their role as acetylcholinesterase inhibitors, have 
been widely reported (13-15). Studies have linked OPP 
exposure to various diseases, including Parkinson’s (16), 
diabetes (17), and prediabetes-like metabolic disorders 
due to alterations in hepatic cell signaling pathways (18). 
Adverse effects on metabolites such as citrate (decrease), 
glycerophosphocholine, threonine, and glycine (increase) 
have also been documented (19,20). OPP toxicity can lead 
to blood and biochemical changes, oxidative stress, and 
lipid peroxidation (21). Clinical symptoms of acute and 
chronic exposure include miosis, salivation, lacrimation, 
gastrointestinal distress, nausea, vomiting, diaphoresis, 
anxiety, muscle weakness, seizures, and respiratory failure 
(22). Late complications may include fatigue, paresthesia, 
and headache (23).

Even low concentrations of OPPs resist degradation, and 
minor chemical changes in their molecular structure can 
significantly alter their toxicity. OPPs bioaccumulate in 
soil, water, air, and agricultural resources, contaminating 
non-target organisms such as humans, fish, and birds. 
Minor chemical changes in the OPPs cause a noticeable 
shift in their toxicity from one species to another (24-
26). Thus, the adverse health effects of pesticides cannot 
be ignored. Numerous studies worldwide have examined 
OPP residues in water resources (27-32). While some 
have assessed the health risks of pesticides in treated 
water, evidence of their presence in drinking water 
resources is abundant (33). Iran imports or manufactures 
approximately 14,000 tons of agricultural pesticides 
annually (34). Ardabil Province, northwest Iran, has 
232,000 hectares under irrigated cultivation. To the 
authors’ knowledge, no study has investigated pesticide 
residues in Ardabil water resources or their associated 
health and environmental risks. This study focuses on 
three widely used OPPs, CPF, malathion, and diazinon, to 
(1) monitor their concentrations in tap and surface water 
and (2) assess their health risk using the Monte Carlo 
approach. The findings aim to address environmental 
concerns regarding the use of OPPs and serve as a 
foundational reference for future research.

Materials and methods
Study area
The study was conducted in northwest Iran between 
latitudes 38°15′13.45″N and longitudes 48°17′59.96″E, in 
a region located between Gilan and Azerbaijan provinces, 
with a distance of approximately 70 km from the Caspian 
Sea. The region has a cold semi-arid climate and an annual 
mean temperature ranging from −25 °C to 35 °C. The yearly 
temperature of the district is 10.01 ºC (50.02 ºF), which 
is 8.42% lower than the average levels in Iran (35). The 
water resources include several aquifers, rivers, dams, and 
reservoirs, the most significant being the Aras border river. 

Sampling 
The location of the study area, situated in the north 
of Iran, is illustrated in Figure S1. The study area has 
been divided into four sub-areas based on ecological 
characteristics and types of cultivation, as depicted in 
the same figure. The Moghan region is one of the most 
important intensive agricultural areas of Ardabil Province 
with developed water resources, including agricultural 
irrigation networks. The water ecosystem of the Moghan 
region includes the Aras River and its marginal wetlands, 
the Dareh Rood River, water supply channels, and drains. 
All kinds of grains, industrial products, fiber products, 
and fodder are among the products of this region. Ardabil 
Plain, located in the central part of Ardabil Province, has 
fertile agricultural lands, and potato is its most important 
agricultural product. In Meshgin Shahr city, horticulture 
is the most important agricultural activity, including the 
production of apples and grapes. Finally, in Khalkhal and 
Kowsar, located in the south of the province, the cultivated 
crop species include barley, alfalfa, legumes, onions, leeks, 
etc., cultivated in a semi-mechanized manner. Therefore, 
pesticides including triazophos, malathion, phorate, 
dichlorvos, dicofol, endosulfan, CPF, and diazinon are 
used in the cultivation of these crops.

Forty-one drinking water samples (29 from surface 
resources and 12 from deep wells) and 30 surface water 
samples were collected in 2020 (Figure S1, S2).

The prevalence of three OPPs (CPF, malathion, and 
diazinon) was measured in these samples. These pesticides 
were the most commonly used, according to the report of 
the agricultural research center in Ardabil Province. 

The bottles were rinsed with distilled water in the 
lab and with the sampling water on-site before sample 
collection. Following standard methods for water and 
wastewater examination, dechlorination of the samples 
was carried out at the time of collection. To protect water 
samples, ascorbic acid was added. The samples were then 
transferred to a coolbox, ensuring they were shielded 
from light and maintained at a temperature of 4 °C (36). 

Extraction and chemical analysis
The solvents used for the extraction, namely acetone, 
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methanol, and MTBE (methyl tert-butyl ether), were 
obtained from Merck Germany (gas chromatography 
grade). The standards for the pesticides chosen for the 
study were obtained from Merck Germany (99.6% purity 
level). HCl (1 N) and NaOH (0.1 N) were used to adjust 
the pH, and deionized water (Milli Q Millipore 18.2 MΩ 
cm−1 conductivity) was used for the preparation of all 
solutions.

The pH of the samples was adjusted in the laboratory. 
Solid phase extraction (SPE) of pesticide residuals 
was conducted using the Environmental Protection 
Agency (EPA) standard method (3535a). Styrene divinyl 
benzene-reverses-phase sulfonate (SDB-RPS) was used as 
the cartridge for SPE, and each cartridge was washed in 
two stages before use (by 5 mL acetone, then let to dry, 
and by 5 mL methanol). In the next step, the cartridge was 
conditioned with 5 mL of methanol and 20 mL of reagent 
water without drying. The disk was dried by maintaining 
a vacuum for about 3 minutes after the sample was passed 
through the solid-phase media. For elution or separating 
the analytes from the cartridge or disk, 0.6 mL of acetone 
was added to the cartridge, and it was soaked for 1 minute. 
The bottle was rinsed twice with methyl tert-butyl ether 
(MTBE). The evaporation method was used to bring the 
volume to exactly 5 mL. Finally, a volume of 1 μL was 
injected into the instrument (36). 

The gas chromatograph (VARIAN Model CP-3800) 
equipped with a flame ionization detector (FID) was 
used for determining the OPPs. The gas chromatograph 
conditions for analyzing pesticides in water samples are 
shown in Table S1 (36).

Quality control and quality assurance
By preparing different solutions, the limit of quantification 
(LOQ) and limit of detection (LOD) of the pesticides were 
calculated. The signal-to-noise ratio (S/N) was recorded 
after injecting the solutions. In this study, the LOD 
was defined as three times the background noise of the 
chromatographic instrument (S/N ratio of 3:1), and the 
LOQ was defined as an S/N ratio of 9:1. The LOD and 
LOQ of the studied pesticides are shown in Table S2. 
Samples with values below the LOD were not detectable 
(ND).

Hazard quotients (HQs) for non-carcinogens risk 
assessment
Non-carcinogenic hazards are quantified as hazard 
quotient (HQ), a unitless value representing the 
probability-specific adverse effect. HQ is defined as 
the ratio of chronic daily intake (CDI) to the toxicity 
threshold value, known as the chronic reference dose 
(RfD) (Eq. 1). Here, CDIi represents the average daily 
intake of a pesticide from water, in mg/kg/day; Ci is the 
concentration of the pesticide (mg/L) in water. IR is the 
ingestion rate in L/day; EF is the exposure frequency in 

days/year; ED is the exposure duration in years; and BW 
is the body weight of the exposed individual in kg. For 
noncarcinogens: AT = ED * 365 days per year, and CF is 
the conversion factor (kg/mg). The requirement factors 
for computing exposure, risk assessment, and RfD values 
for CPF, malathion, and diazinon, according to the 
Integrated Risk Information System (IRIS: https://www.
epa.gov/iris), are summarized in Table S3 (37).

  IR EF ED CF
BW  AT

iCCDI × × × ×
=

×
			   (1)

The noncancer risk was estimated using the hazard 
index (HI) from Equations 2 and 3, as follows:

   /  HQ CDIi RfDi= 				    (2) 

HI HQ= ∑ 					     (3)

In this study, HI values were calculated from the results 
of drinking water samples for the adult group. In the 
second step, sensitivity analysis was performed, and the 
uncertainty risk assessment model was incorporated using 
the Monte Carlo simulation approach with Crystal Ball 
software (Version 11.1.2.3, Decisioneering, Inc., Denver, 
CO, USA). Moreover, a representative risk distribution 
was produced by 10,000 trials, which is enough to confirm 
the result’s stability (38). 

Statistical analysis 
Descriptive and inferential analyses were conducted using 
SPSS software (version 22.0). Calibration curves for OPP 
standards were generated using linear regression analysis. 
Data are represented as mean ± standard deviation (SD). 
Statistical significance was set at P < 0.05 for all tests. 
Pesticide distribution maps were created using ArcGIS 
10.1, with independent raster layers for OPPs interpolated 
and visualized using the Kriging pattern.

Results 
The analysis of drinking water samples from Ardabil 
Province in northwestern Iran is summarized in Table 1. 
The results for the tap water distribution system samples 
revealed elevated levels of CPF at 0.05 mg/L and malathion 
at 0.01 mg/L, while diazinon was not detected. Based 
on average concentrations across sampling locations, 
the pesticides were ranked in the following order: CPF 
(0.007 mg/L) > malathion (0.004 mg/L) > diazinon. 
However, in surface water samples, the mean surface 
water concentrations were 0.006 mg/L (CPF), 0.013 mg/L 
(malathion), and 0.003 mg/L (diazinon).

Figures 1-5 illustrate the spatial distribution of pesticide 
concentrations, highlighting that approximately 7% of tap 
water samples exceeded Iran’s maximum concentration 
level (MCL) for CPF. The highest levels were found in 
the northern and central regions, primarily linked to 

https://www.epa.gov/iris
https://www.epa.gov/iris
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Table 1. Statistical description of the pesticides in water samples (mg/L)

Pesticide
Distribution (tap) water network (n = 41) Surface water (n = 30)

Chlorpyrifos Malathion Diazinon Chlorpyrifos Malathion Diazinon

Mean 0.007 0.004 ND 0.006 0.013 0.003

Std. Deviation 0.01 0.003 ND 0.004 0.02 0.007

Median 0.003 0.005 ND 0.005 0.01 ND

Minimum ND ND ND ND ND ND

Maximum 0.05 0.01 ND 0.01 0.08 0.03

Figure 1.. Spatial trend of malathion in potable water

Figure 2. Spatial trend of CPF in potable water

Figure 3. Spatial trend of malathion values in surface water

Figure 4. Spatial trend of diazinon values in surface water
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intensive agricultural activities and pesticide application. 
Furthermore, surface water contamination in central 
areas may also stem from domestic or livestock pesticide 
use. The non-carcinogenic risk assessment results, shown 
in Table 2 and Figures 6 and 7, indicate that all pesticide 
exposure levels remained below the risk threshold, with 
HI values under 1.

Figures S4 and S5 present the sensitivity analysis, 
which revealed that CPF concentration and the exposure 
duration for malathion were the most influential 
parameters affecting CDI and non-carcinogenic health 
risks. Additionally, body weight showed an inverse 
correlation with risk levels, and environmental variability 
contributed significantly to the uncertainty in exposure 
assessments.

Discussion
A high amount of pollution was detected in the drinking 
water network of northeast Ardabil Province. Significant 
pesticide contamination was detected in the drinking 
water network of northeast Ardabil Province. Some 
organizations have established maximum residue limits. 
The European Union (EU) has recommended 0.1 μg/L 
as the maximum allowed concentration for individual 
pesticides and related products, and 0.5 μg/L for total 
pesticides in drinking water (39). The USEPA reported 
an acceptable concentration of 20 μg/L for diazinon 
in drinking water and 1 μg/L for short and long-term 
exposure (40). The Institute of Standards and Industrial 
Research of Iran has established a maximum permissible 
concentration of CPF at < 0.03 mg/L (Standard No. 1053)
(41). According to the pesticide distribution map, 1–2% 

of tap water samples exceeded Iran’s MCL for CPF in this 
region. Numerous studies have documented the potential 
health risks associated with OPP exposure, including 
cancer, neurological disorders (particularly Parkinson’s 
disease and depression), diabetes, and respiratory 
conditions (42-45). Consequently, the detection of these 
three pesticides in our study raises significant public 
health concerns. The study conducted by Shayeghi et al 
on the Tehran drinking water supply showed that the 
residues of malathion and diazinon were 4.1 and 3 mg/L, 
respectively, which were higher than the allowed limits 
(46). Karyab et al reported diazinon (0.0194 mg/L) and 
malathion (0.0181 mg/L) in Qazvin Province, which is in 
line with our findings (47). In the study of Ebrahimzadeh 
et al in Sistan Plain, south-east Iran, the value of diazinon 
was detected at 0.013 to 0.084 mg/L in drinking water 
wells. The mean diazinon concentration in all water 
resources was below the maximum permissible level 
established by the Canadian Guidelines for Drinking 
Water Quality (48). The study by Derbalah et al was 
carried out to monitor the presence of organophosphorus 
in drinking water plants in Egypt and showed the 
presence of several OPPs in the range of 0.070 to 2.95 mg/ 
L. CPF has high frequency relative to other compounds 
in drinking water and malathion values were less than the 
detectable concentration (49). Diazinon is a frequently 
used insecticide because of its low cost and high efficacy as 
an acetylcholinesterase inhibitor (50). However, diazinon 
was detected in the surface water samples and was not 
observed in any of the purified water samples. Positive 
processes in the environment, such as UV photolysis, 
microbial degradation, hydrolysis, or chemical oxidation, 
degrade a part of pesticide concentrations. Drinking water 
treatment facilities such as activated carbon absorption, 
chlorine, UV photolysis, and ozone treatment can reduce 
pesticide concentrations before human consumption 
(51,52).

The study by Elfikrie et al in Malaysia showed the 
efficiency of pesticide removal in the conventional water 
treatment method (filtration-coagulation-flocculation-
sedimentation). Before the water treatment process, nine 
pesticides with a maximum detection level of 0.3928 µg/L 
were detected in water samples. After the combined water 
treatment process, all the targeted pesticide compounds 
were found to be less than 0.1 μg/L (53). According 
to similarly conducted studies, in the present study, 
diazinon was not detected in any drinking water samples. 

Figure 5. Spatial trend of CPF values in surface water

Table 2. Non-carcinogenic results of pesticides (HI)

Hazard
Index (HI)

Distribution water network

Chlorpyrifos Malathion Diazinon

Mean 0.01 0.001 ND

Std. deviation 0.01 0.001 ND

Maximum 0.07 0.001 ND

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/alpha-oxidation
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On the other hand, in the northern regions where potable 
water is sourced from surface water sources, the intensity 
of contamination with CPF and malathion is in the high 
range (Figure S6 and Figures 1, 2). It can be concluded that 
in these regions, which have agricultural uses, pesticide 
residues in water sources are more intense.

Most farmers use more OPPs than others because of 
their low cost and wide range of uses. Malathion, CPF, and 
diazinon have been used all over Iran (54,55). According 
to the results, the mean value of malathion was 0.013 
mg/L in surface water samples. The study of Safari et al on 
surface waters in Iran, which is consistent with the results 
of the present study, showed high levels of diazinon and 
malathion (55). They found agricultural and horticultural 
activities in to be the reason for the high concentration of 

these OPP compounds, which is similar to our findings 
for our study area. The study by Fadaei et al on the surface 
water of Mazandaran, in the north of Iran, showed that 
the amounts of malathion and diazinon pesticides were 
higher than the allowed limits. European Union (EU) 
standards set a maximum allowable concentration of 1–3 
µg/L for total pesticides in surface waters. In Mazandaran 
(northern Iran), the measured concentrations significantly 
exceeded these limits, with diazinon ranging from 77.6 
to 101.6 µg/L and malathion from 55.7 to 75.9 µg/L. 
This substantial contamination primarily results from 
intensive pesticide use in rice cultivation throughout the 
region. (56). The study of Zarei-Choghan et al reported 
that the mean concentration of some OPPs (CPF, 
malathion, ethion, dichlorvos, trifluralin, and diazinon) 

Figure 6. Simulation histogram for HQ caused by malathion exposure in drinking water

Figure 7. Simulation histogram for HQ caused by CPF exposure in drinking water

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/malathion
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/ethion
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/dichlorvos
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/trifluralin
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in the Naseri wetland in Iran ranged from 0.14 to 0.35 and 
0.054 to 0.2 μg/L in summer and autumn, respectively 
(57). In Chilika Lake, India, CPF was found in the range 
of 0.019–2.73 μg/L, which is consistent with the results of 
the present study (58).

In contrast, Parana, Brazil, documented widespread 
organochlorine pesticide contamination, including 
lindane (2.17 ppb) and chlordane (0.181 ppb), with 97% 
of municipalities exceeding EU limits (59). Similarly, 
North India demonstrated elevated OCPs (particularly 
α-HCH, p,p’-DDE) in both groundwater and tap water, 
with α-HCH concentrations slightly exceeding the WHO 
guideline of 0.001 µg/L (60). Polish research identified 
seasonal variations and detected 22 pesticides in river 
water (maximum concentration: 0.472 µg/L), including 
persistent compounds like isoproturon in distant filtration 
wells (61). Most notably, monitoring in Mexico and Iran’s 
Gorganrood River revealed malathion concentrations 
dramatically surpassing WHO standards, reaching 863.49 
μg/L in Mexico and 88.11 μg/L in Gorganrood during 
spring (62). 

As can be seen in the land use map of Ardabil Province 
(Figure S6), agriculture has been widely developed and 
mechanized in the northern regions of Ardabil Province, 
mainly due to its suitable climate and its proximity to the 
Caspian Sea. Wheat and summer crops are cultivated 
three times a year in this area. Therefore, a high level 
of pesticide residues in water resources was expected, 
considering the many fruit orchards in the region and the 
use of pesticides for pests.

The highest points of pesticides in surface water 
located in the north and central regions are shown in 
Figures4 and 5. In the central areas, unlike the northern 
areas, there is no intensive agriculture, but it seems that 
domestic uses and the use of pesticides for pest control in 
livestock are the main reasons for pollution.

Non-carcinogenic risk assessment
Recently the HQ, which measures the non-carcinogenic 
risk of specific contaminants, has been used to assess the 
risks caused by environmental contamination such as 
assessment of the risk caused by metals and metalloids in 
marketed infant formulas (63), heavy metal contamination 
in soil, water, and vegetables (64), BTEX compounds (65), 
trihalomethanes through successive showering events 
(66), and PM2.5 emissions from various sources (67).

According to the USEPA, HI values more than 1 could 
be over the potential toxicity. The non-carcinogenic 
risk results of pesticides (HI) are shown in Table 2 and 
Figures 6,7. The highest mean score of HI was reported 
for CPF with a value of 0.07. None of the samples had a 
noncancer risk, considering HI < 1. This is consistent with 
the results of some studies. In Egypt, the target HQ (THQ) 
values for non-carcinogenic pesticide hazards observed 
in surface and drinking water were less than 1 (68). In 

Kashmir, India, CPF was detected in surface, ground, 
and tap water samples with a THQ assessment for CPF 
greater than 1 (69). In another study in Iran, HQ > 1 for 
CPF exposure was obtained in 20% of pregnant women 
based on the USEPA guideline values (70). 

Sensitivity analysis
Using a probabilistic approach, the variation in the HQ 
was estimated by applying the Monte Carlo technique with 
1000 repetitions. HQ values, including standard deviation, 
mean, median, 5th percentile, and 95th percentile, were 
predicted using uncertainties. The main variables related 
to cancer risk were identified by sensitivity analysis. 

The effective factors in the HQ due to exposure to high 
values of toxic elements were highlighted by sensitivity 
analysis (Figures 4 and 5). The study results indicated that 
the pesticide concentration for CPF and the ED of water 
for malathion had the most effect on noncancer risk. Also, 
BW, CPF, and malathion showed an inverse correlation. 
While pesticide exposure appears to be a satisfactory way 
to assess the risks pesticide exposure poses to human 
health, it has certain limitattions. These include changes 
in risk factors from day-to-day or area-to-area, differences 
in human exposure to pesticides, and unreliable detection 
tools (65,71). 

Conclusion
This study investigated the concentrations of three 
pesticides, namely CPF, malathion, and diazinon, in both 
tap water and surface water in Ardabil Province. High 
concentrations of CPF (0.05 mg/L), malathion (0.01 
mg/L), and diazinon (not detected) were detected in the 
distribution (tap) water network. The mean pesticide levels 
in tap water samples across the study area were found to 
be below the established standards in Iran. However, it 
is noteworthy that in the northeastern part of the study 
area, CPF levels exceeded Iran’s MCL in 7 percent of 
the samples. The mean values of CPF, malathion, and 
diazinon in surface water were measured at 0.006, 0.013, 
and 0.003 mg/L, respectively. The highest concentrations 
of pesticides in surface water were observed in the northern 
and central regions, which had high agricultural activities. 
Considering noncancer risks, the HI values for drinking 
water samples were negligible. Sensitivity analysis 
highlighted that pesticide concentration, particularly for 
CPF, and exposure duration for malathion had the most 
significant impact on average daily dose (ADD) and HQ.

These findings underscore the importance of monitoring 
and modeling pesticide levels in public water systems to 
evaluate associated health risks. Furthermore, the study 
underscores the necessity of limiting pesticide usage in 
agricultural activities and promoting the adoption of 
environmentally friendly alternatives.

This study has several limitations. The small sample size 
restricted our statistical power. While the estimated risks 
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for the selected pesticides were lower than the EPA RfD 
(HQ < 1.0), this does not imply that there are no health 
risks. Other exposure pathways, such as inhalation and 
dietary intake, should also be taken into account.
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