

Spatial Distribution and Health Risk Assessment of Pesticide Residues in Surface Water and Tap Water in the Northwest of Iran

Zahra Atafar¹, Amir Mohammadi^{2,3*}, Abdollah Dargahi^{4,5}, Mehdi Vosoughi Niri^{5,6}, Niloufar Hashemi Danesh⁷, Tayebe Sadeghi⁶, Ahmad Mokhtari⁶, Hadi Sadeghi⁶, Morteza Alighadri⁶, Anoshirvan Sedigh⁶

¹Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran

²Social Determinants of Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran

³Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran

⁴Department of Environmental Health, Khalkhal University of Medical Sciences, Khalkhal, Iran

⁵Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran

⁶Department of Environmental Health, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran

⁷Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Background: This study aimed to determine the spatial assessment and risk assessment of three widely used pesticides, chlorpyrifos (CPF), malathion, and diazinon, in the tap water distribution network and surface water of Ardabil Province, northwest Iran.

Methods: Sampling was conducted at 41 points in the water distribution network and 30 surface water points. Pesticide values were detected by gas chromatograph-flame ionization detector (GC-FID) after solid-phase extraction.

Results: The ranking of pesticide compounds in tap water was CPF > malathion > diazinon. The mean concentrations of CPF, malathion, and diazinon in surface water were found to be 0.006, 0.013, and 0.003 mg/L, respectively. The highest pesticide concentrations were detected in the northeast region. CPF concentrations exceeded the maximum concentration level (MCL) in 7% of tap water samples.

Conclusion: Based on USEPA standards, the average non-carcinogenic health risks from exposure to pesticides through water consumption remained within the acceptable limits, with a hazard index (HI) below 1 (HI < 1 indicates "acceptable risk" per USEPA). Sensitivity analysis indicated that CPF concentration and the exposure duration to malathion had the most significant influence on chronic daily intake (CDI) and potential noncancer health effects. Although pesticide levels in drinking water mostly stayed within safe limits, concentrations in the northern region exceeded permissible levels. Therefore, further efforts are essential to regulate pesticide contamination and reduce related health risks in the future.

Keywords: Drinking water, Pesticides, Risk assessment, Water supply, Iran

Citation: Atafar Z, Mohammadi A, Dargahi A, Vosoughi Niri M, Hashemi Danesh N, Sadeghi T, et al. Spatial distribution and health risk assessment of pesticide residues in surface water and tap water in the Northwest of Iran. Environmental Health Engineering and Management Journal. 2026;13:1590. doi: 10.34172/EHEM.1590.

Article History:

Received: 9 April 2025

Revised: 9 June 2025

Accepted: 11 June 2025

ePublished: 7 January 2026

*Correspondence to:

Tayebe Sadeghi,
Email: sadeghi.tayebe@gmail.com;
Amir Mohammadi,
Emails: mohammadiurm@gmail.com, mohammadi_a@umsu.ac.ir

Introduction

The human population is projected to reach nearly 9 billion by 2050, and to meet the increasing food demand, agricultural production must rise significantly (1,2). In recent years, pest and disease control have greatly enhanced agricultural output (3-5). The State of Food and Agriculture 2023 report highlights a notable rise in pesticide usage, with global consumption reaching 3.54 million tons of active ingredients in 2021, i.e., an

11% rise over the past decade and double the amount since 1990 (6). While pesticides benefit human life by improving crop yields and controlling diseases, they also pose health risks through occupational or environmental exposures. Pesticides are among the most significant toxic environmental contaminants worldwide. The agriculture sector has repeatedly warned about the toxic effects of excessive pesticide use on public health and the environment (7,8). In developing countries,

pesticide poisoning incidents are frequent due to rising consumption. Chronic exposure to pesticides can impair organ function and harm human health (9,10). Pesticide residues enter aquatic environments through drift, drainage, equipment washing, improper disposal of empty containers, leaching, and surface runoff. As a result, soil and water sources become major sinks for environmental pesticide residues (11,12).

Organochlorine pesticides (OCPs) and organophosphorus pesticides (OPPs) are the two main groups of pesticides used globally. OPPs are primarily used as insecticides and consist of organophosphate compounds. After the ban on persistent OCPs in the late 1990s, OPPs became a popular alternative. However, their high neurotoxicity and carcinogenicity, attributed to their role as acetylcholinesterase inhibitors, have been widely reported (13-15). Studies have linked OPP exposure to various diseases, including Parkinson's (16), diabetes (17), and prediabetes-like metabolic disorders due to alterations in hepatic cell signaling pathways (18). Adverse effects on metabolites such as citrate (decrease), glycerophosphocholine, threonine, and glycine (increase) have also been documented (19,20). OPP toxicity can lead to blood and biochemical changes, oxidative stress, and lipid peroxidation (21). Clinical symptoms of acute and chronic exposure include miosis, salivation, lacrimation, gastrointestinal distress, nausea, vomiting, diaphoresis, anxiety, muscle weakness, seizures, and respiratory failure (22). Late complications may include fatigue, paresthesia, and headache (23).

Even low concentrations of OPPs resist degradation, and minor chemical changes in their molecular structure can significantly alter their toxicity. OPPs bioaccumulate in soil, water, air, and agricultural resources, contaminating non-target organisms such as humans, fish, and birds. Minor chemical changes in the OPPs cause a noticeable shift in their toxicity from one species to another (24-26). Thus, the adverse health effects of pesticides cannot be ignored. Numerous studies worldwide have examined OPP residues in water resources (27-32). While some have assessed the health risks of pesticides in treated water, evidence of their presence in drinking water resources is abundant (33). Iran imports or manufactures approximately 14,000 tons of agricultural pesticides annually (34). Ardabil Province, northwest Iran, has 232,000 hectares under irrigated cultivation. To the authors' knowledge, no study has investigated pesticide residues in Ardabil water resources or their associated health and environmental risks. This study focuses on three widely used OPPs, CPF, malathion, and diazinon, to (1) monitor their concentrations in tap and surface water and (2) assess their health risk using the Monte Carlo approach. The findings aim to address environmental concerns regarding the use of OPPs and serve as a foundational reference for future research.

Materials and methods

Study area

The study was conducted in northwest Iran between latitudes 38°15'13.45"N and longitudes 48°17'59.96"E, in a region located between Gilan and Azerbaijan provinces, with a distance of approximately 70 km from the Caspian Sea. The region has a cold semi-arid climate and an annual mean temperature ranging from -25 °C to 35 °C. The yearly temperature of the district is 10.01 °C (50.02 °F), which is 8.42% lower than the average levels in Iran (35). The water resources include several aquifers, rivers, dams, and reservoirs, the most significant being the Aras border river.

Sampling

The location of the study area, situated in the north of Iran, is illustrated in [Figure S1](#). The study area has been divided into four sub-areas based on ecological characteristics and types of cultivation, as depicted in the same figure. The Moghan region is one of the most important intensive agricultural areas of Ardabil Province with developed water resources, including agricultural irrigation networks. The water ecosystem of the Moghan region includes the Aras River and its marginal wetlands, the Dareh Rood River, water supply channels, and drains. All kinds of grains, industrial products, fiber products, and fodder are among the products of this region. Ardabil Plain, located in the central part of Ardabil Province, has fertile agricultural lands, and potato is its most important agricultural product. In Meshgin Shahr city, horticulture is the most important agricultural activity, including the production of apples and grapes. Finally, in Khalkhal and Kowsar, located in the south of the province, the cultivated crop species include barley, alfalfa, legumes, onions, leeks, etc., cultivated in a semi-mechanized manner. Therefore, pesticides including triazophos, malathion, phorate, dichlorvos, dicofol, endosulfan, CPF, and diazinon are used in the cultivation of these crops.

Forty-one drinking water samples (29 from surface resources and 12 from deep wells) and 30 surface water samples were collected in 2020 ([Figure S1, S2](#)).

The prevalence of three OPPs (CPF, malathion, and diazinon) was measured in these samples. These pesticides were the most commonly used, according to the report of the agricultural research center in Ardabil Province.

The bottles were rinsed with distilled water in the lab and with the sampling water on-site before sample collection. Following standard methods for water and wastewater examination, dechlorination of the samples was carried out at the time of collection. To protect water samples, ascorbic acid was added. The samples were then transferred to a coolbox, ensuring they were shielded from light and maintained at a temperature of 4 °C (36).

Extraction and chemical analysis

The solvents used for the extraction, namely acetone,

methanol, and MTBE (methyl tert-butyl ether), were obtained from Merck Germany (gas chromatography grade). The standards for the pesticides chosen for the study were obtained from Merck Germany (99.6% purity level). HCl (1 N) and NaOH (0.1 N) were used to adjust the pH, and deionized water (Milli Q Millipore 18.2 MΩ cm⁻¹ conductivity) was used for the preparation of all solutions.

The pH of the samples was adjusted in the laboratory. Solid phase extraction (SPE) of pesticide residuals was conducted using the Environmental Protection Agency (EPA) standard method (3535a). Styrene divinyl benzene-reverses-phase sulfonate (SDB-RPS) was used as the cartridge for SPE, and each cartridge was washed in two stages before use (by 5 mL acetone, then let to dry, and by 5 mL methanol). In the next step, the cartridge was conditioned with 5 mL of methanol and 20 mL of reagent water without drying. The disk was dried by maintaining a vacuum for about 3 minutes after the sample was passed through the solid-phase media. For elution or separating the analytes from the cartridge or disk, 0.6 mL of acetone was added to the cartridge, and it was soaked for 1 minute. The bottle was rinsed twice with methyl tert-butyl ether (MTBE). The evaporation method was used to bring the volume to exactly 5 mL. Finally, a volume of 1 μL was injected into the instrument (36).

The gas chromatograph (VARIAN Model CP-3800) equipped with a flame ionization detector (FID) was used for determining the OPPs. The gas chromatograph conditions for analyzing pesticides in water samples are shown in Table S1 (36).

Quality control and quality assurance

By preparing different solutions, the limit of quantification (LOQ) and limit of detection (LOD) of the pesticides were calculated. The signal-to-noise ratio (S/N) was recorded after injecting the solutions. In this study, the LOD was defined as three times the background noise of the chromatographic instrument (S/N ratio of 3:1), and the LOQ was defined as an S/N ratio of 9:1. The LOD and LOQ of the studied pesticides are shown in Table S2. Samples with values below the LOD were not detectable (ND).

Hazard quotients (HQs) for non-carcinogens risk assessment

Non-carcinogenic hazards are quantified as hazard quotient (HQ), a unitless value representing the probability-specific adverse effect. HQ is defined as the ratio of chronic daily intake (CDI) to the toxicity threshold value, known as the chronic reference dose (RfD) (Eq. 1). Here, CDI_i represents the average daily intake of a pesticide from water, in mg/kg/day; C_i is the concentration of the pesticide (mg/L) in water. IR is the ingestion rate in L/day; EF is the exposure frequency in

days/year; ED is the exposure duration in years; and BW is the body weight of the exposed individual in kg. For noncarcinogens: AT=ED * 365 days per year, and CF is the conversion factor (kg/mg). The requirement factors for computing exposure, risk assessment, and RfD values for CPF, malathion, and diazinon, according to the Integrated Risk Information System (IRIS: <https://www.epa.gov/iris>) (37), are summarized in Table S3 (37).

$$CDI = \frac{C_i \times IR \times EF \times ED \times CF}{BW \times AT} \quad (1)$$

The noncancer risk was estimated using the hazard index (HI) from Equations 2 and 3, as follows:

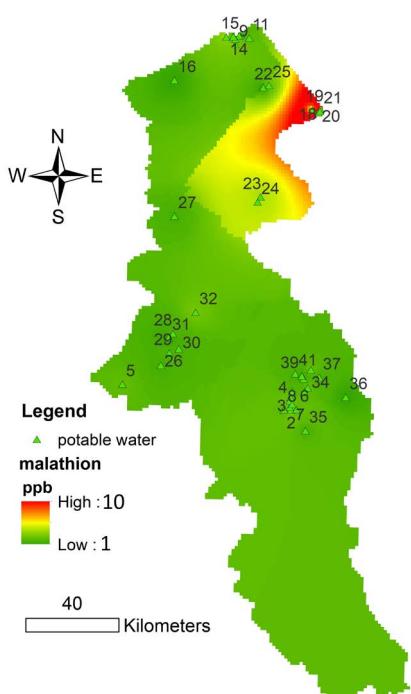
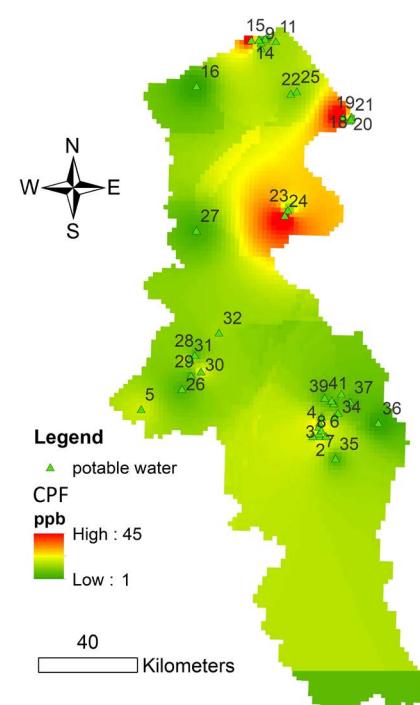
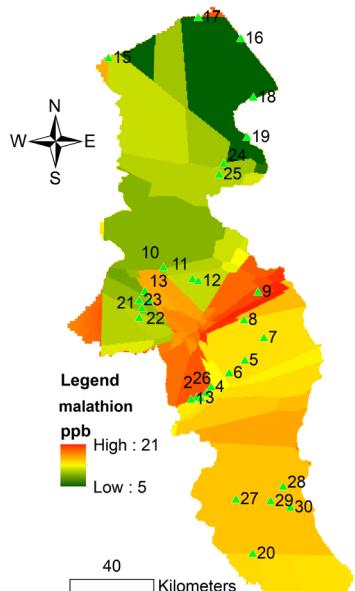
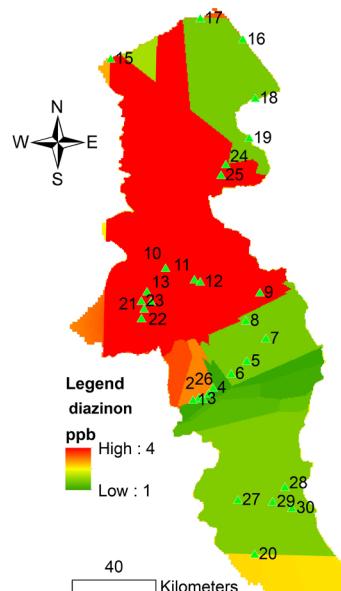
$$HQ = CDI_i / RfD_i \quad (2)$$

$$HI = \sum HQ \quad (3)$$

In this study, HI values were calculated from the results of drinking water samples for the adult group. In the second step, sensitivity analysis was performed, and the uncertainty risk assessment model was incorporated using the Monte Carlo simulation approach with Crystal Ball software (Version 11.1.2.3, Decisioneering, Inc., Denver, CO, USA). Moreover, a representative risk distribution was produced by 10,000 trials, which is enough to confirm the result's stability (38).

Statistical analysis

Descriptive and inferential analyses were conducted using SPSS software (version 22.0). Calibration curves for OPP standards were generated using linear regression analysis. Data are represented as mean ± standard deviation (SD). Statistical significance was set at *P* < 0.05 for all tests. Pesticide distribution maps were created using ArcGIS 10.1, with independent raster layers for OPPs interpolated and visualized using the Kriging pattern.





Results

The analysis of drinking water samples from Ardabil Province in northwestern Iran is summarized in Table 1. The results for the tap water distribution system samples revealed elevated levels of CPF at 0.05 mg/L and malathion at 0.01 mg/L, while diazinon was not detected. Based on average concentrations across sampling locations, the pesticides were ranked in the following order: CPF (0.007 mg/L) > malathion (0.004 mg/L) > diazinon. However, in surface water samples, the mean surface water concentrations were 0.006 mg/L (CPF), 0.013 mg/L (malathion), and 0.003 mg/L (diazinon).

Figures 1-5 illustrate the spatial distribution of pesticide concentrations, highlighting that approximately 7% of tap water samples exceeded Iran's maximum concentration level (MCL) for CPF. The highest levels were found in the northern and central regions, primarily linked to

Table 1. Statistical description of the pesticides in water samples (mg/L)

Pesticide	Distribution (tap) water network (n=41)			Surface water (n=30)		
	Chlorpyrifos	Malathion	Diazinon	Chlorpyrifos	Malathion	Diazinon
Mean	0.007	0.004	ND	0.006	0.013	0.003
Std. Deviation	0.01	0.003	ND	0.004	0.02	0.007
Median	0.003	0.005	ND	0.005	0.01	ND
Minimum	ND	ND	ND	ND	ND	ND
Maximum	0.05	0.01	ND	0.01	0.08	0.03

Figure 1. Spatial trend of malathion in potable water**Figure 3.** Spatial trend of malathion values in surface water**Figure 2.** Spatial trend of CPF in potable water**Figure 4.** Spatial trend of diazinon values in surface water

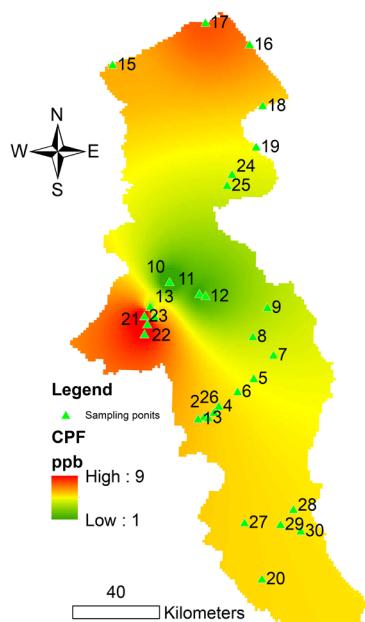


Figure 5. Spatial trend of CPF values in surface water

intensive agricultural activities and pesticide application. Furthermore, surface water contamination in central areas may also stem from domestic or livestock pesticide use. The non-carcinogenic risk assessment results, shown in Table 2 and Figures 6 and 7, indicate that all pesticide exposure levels remained below the risk threshold, with HI values under 1.

Figures S4 and S5 present the sensitivity analysis, which revealed that CPF concentration and the exposure duration for malathion were the most influential parameters affecting CDI and non-carcinogenic health risks. Additionally, body weight showed an inverse correlation with risk levels, and environmental variability contributed significantly to the uncertainty in exposure assessments.

Discussion

A high amount of pollution was detected in the drinking water network of northeast Ardabil Province. Significant pesticide contamination was detected in the drinking water network of northeast Ardabil Province. Some organizations have established maximum residue limits. The European Union (EU) has recommended 0.1 $\mu\text{g/L}$ as the maximum allowed concentration for individual pesticides and related products, and 0.5 $\mu\text{g/L}$ for total pesticides in drinking water (39). The USEPA reported an acceptable concentration of 20 $\mu\text{g/L}$ for diazinon in drinking water and 1 $\mu\text{g/L}$ for short and long-term exposure (40). The Institute of Standards and Industrial Research of Iran has established a maximum permissible concentration of CPF at $<0.03 \mu\text{g/L}$ (Standard No. 1053) (41). According to the pesticide distribution map, 1–2%

Table 2. Non-carcinogenic results of pesticides (HI)

Hazard Index (HI)	Distribution water network		
	Chlorpyrifos	Malathion	Diazinon
Mean	0.01	0.001	ND
Std. deviation	0.01	0.001	ND
Maximum	0.07	0.001	ND

of tap water samples exceeded Iran's MCL for CPF in this region. Numerous studies have documented the potential health risks associated with OPP exposure, including cancer, neurological disorders (particularly Parkinson's disease and depression), diabetes, and respiratory conditions (42–45). Consequently, the detection of these three pesticides in our study raises significant public health concerns. The study conducted by Shayeghi et al on the Tehran drinking water supply showed that the residues of malathion and diazinon were 4.1 and 3 mg/L, respectively, which were higher than the allowed limits (46). Karyab et al reported diazinon (0.0194 mg/L) and malathion (0.0181 mg/L) in Qazvin Province, which is in line with our findings (47). In the study of Ebrahimzadeh et al in Sistan Plain, south-east Iran, the value of diazinon was detected at 0.013 to 0.084 mg/L in drinking water wells. The mean diazinon concentration in all water resources was below the maximum permissible level established by the Canadian Guidelines for Drinking Water Quality (48). The study by Derbalah et al was carried out to monitor the presence of organophosphorus in drinking water plants in Egypt and showed the presence of several OPPs in the range of 0.070 to 2.95 mg/L. CPF has high frequency relative to other compounds in drinking water and malathion values were less than the detectable concentration (49). Diazinon is a frequently used insecticide because of its low cost and high efficacy as an acetylcholinesterase inhibitor (50). However, diazinon was detected in the surface water samples and was not observed in any of the purified water samples. Positive processes in the environment, such as UV photolysis, microbial degradation, hydrolysis, or chemical oxidation, degrade a part of pesticide concentrations. Drinking water treatment facilities such as activated carbon absorption, chlorine, UV photolysis, and ozone treatment can reduce pesticide concentrations before human consumption (51,52).

The study by Elfikrie et al in Malaysia showed the efficiency of pesticide removal in the conventional water treatment method (filtration-coagulation-flocculation-sedimentation). Before the water treatment process, nine pesticides with a maximum detection level of 0.3928 $\mu\text{g/L}$ were detected in water samples. After the combined water treatment process, all the targeted pesticide compounds were found to be less than 0.1 $\mu\text{g/L}$ (53). According to similarly conducted studies, in the present study, diazinon was not detected in any drinking water samples.

Figure 6. Simulation histogram for HQ caused by malathion exposure in drinking water

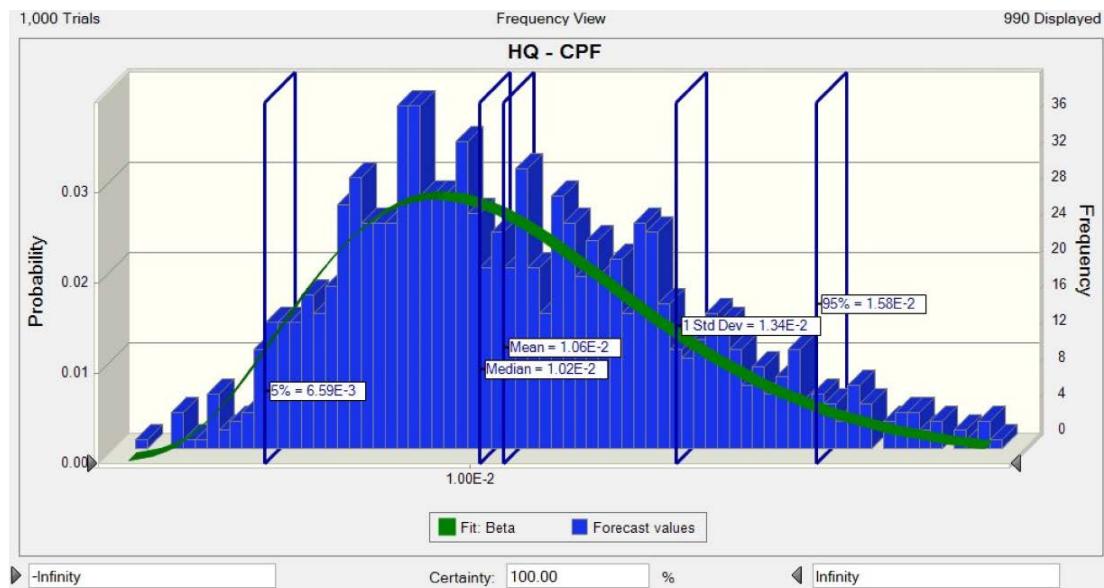


Figure 7. Simulation histogram for HQ caused by CPF exposure in drinking water

On the other hand, in the northern regions where potable water is sourced from surface water sources, the intensity of contamination with CPF and malathion is in the high range (Figure S6 and Figures 1, 2). It can be concluded that in these regions, which have agricultural uses, pesticide residues in water sources are more intense.

Most farmers use more OPPs than others because of their low cost and wide range of uses. Malathion, CPF, and diazinon have been used all over Iran (54,55). According to the results, the mean value of malathion was 0.013 mg/L in surface water samples. The study of Safari et al on surface waters in Iran, which is consistent with the results of the present study, showed high levels of diazinon and malathion (55). They found agricultural and horticultural activities in to be the reason for the high concentration of

these OPP compounds, which is similar to our findings for our study area. The study by Fadaei et al on the surface water of Mazandaran, in the north of Iran, showed that the amounts of malathion and diazinon pesticides were higher than the allowed limits. European Union (EU) standards set a maximum allowable concentration of 1–3 µg/L for total pesticides in surface waters. In Mazandaran (northern Iran), the measured concentrations significantly exceeded these limits, with diazinon ranging from 77.6 to 101.6 µg/L and malathion from 55.7 to 75.9 µg/L. This substantial contamination primarily results from intensive pesticide use in rice cultivation throughout the region. (56). The study of Zarei-Choghan et al reported that the mean concentration of some OPPs (CPF, malathion, ethion, dichlorvos, trifluralin, and diazinon)

in the Naseri wetland in Iran ranged from 0.14 to 0.35 and 0.054 to 0.2 $\mu\text{g/L}$ in summer and autumn, respectively (57). In Chilika Lake, India, CPF was found in the range of 0.019–2.73 $\mu\text{g/L}$, which is consistent with the results of the present study (58).

In contrast, Parana, Brazil, documented widespread organochlorine pesticide contamination, including lindane (2.17 ppb) and chlordane (0.181 ppb), with 97% of municipalities exceeding EU limits (59). Similarly, North India demonstrated elevated OCPs (particularly α -HCH, p,p'-DDE) in both groundwater and tap water, with α -HCH concentrations slightly exceeding the WHO guideline of 0.001 $\mu\text{g/L}$ (60). Polish research identified seasonal variations and detected 22 pesticides in river water (maximum concentration: 0.472 $\mu\text{g/L}$), including persistent compounds like isoproturon in distant filtration wells (61). Most notably, monitoring in Mexico and Iran's Gorganrood River revealed malathion concentrations dramatically surpassing WHO standards, reaching 863.49 $\mu\text{g/L}$ in Mexico and 88.11 $\mu\text{g/L}$ in Gorganrood during spring (62).

As can be seen in the land use map of Ardabil Province (Figure S6), agriculture has been widely developed and mechanized in the northern regions of Ardabil Province, mainly due to its suitable climate and its proximity to the Caspian Sea. Wheat and summer crops are cultivated three times a year in this area. Therefore, a high level of pesticide residues in water resources was expected, considering the many fruit orchards in the region and the use of pesticides for pests.

The highest points of pesticides in surface water located in the north and central regions are shown in Figures 4 and 5. In the central areas, unlike the northern areas, there is no intensive agriculture, but it seems that domestic uses and the use of pesticides for pest control in livestock are the main reasons for pollution.

Non-carcinogenic risk assessment

Recently the HQ, which measures the non-carcinogenic risk of specific contaminants, has been used to assess the risks caused by environmental contamination such as assessment of the risk caused by metals and metalloids in marketed infant formulas (63), heavy metal contamination in soil, water, and vegetables (64), BTEX compounds (65), trihalomethanes through successive showering events (66), and $\text{PM}_{2.5}$ emissions from various sources (67).

According to the USEPA, HI values more than 1 could be over the potential toxicity. The non-carcinogenic risk results of pesticides (HI) are shown in Table 2 and Figures 6,7. The highest mean score of HI was reported for CPF with a value of 0.07. None of the samples had a noncancer risk, considering $\text{HI} < 1$. This is consistent with the results of some studies. In Egypt, the target HQ (THQ) values for non-carcinogenic pesticide hazards observed in surface and drinking water were less than 1 (68). In

Kashmir, India, CPF was detected in surface, ground, and tap water samples with a THQ assessment for CPF greater than 1 (69). In another study in Iran, $\text{HQ} > 1$ for CPF exposure was obtained in 20% of pregnant women based on the USEPA guideline values (70).

Sensitivity analysis

Using a probabilistic approach, the variation in the HQ was estimated by applying the Monte Carlo technique with 1000 repetitions. HQ values, including standard deviation, mean, median, 5th percentile, and 95th percentile, were predicted using uncertainties. The main variables related to cancer risk were identified by sensitivity analysis.

The effective factors in the HQ due to exposure to high values of toxic elements were highlighted by sensitivity analysis (Figures 4 and 5). The study results indicated that the pesticide concentration for CPF and the ED of water for malathion had the most effect on noncancer risk. Also, BW, CPF, and malathion showed an inverse correlation. While pesticide exposure appears to be a satisfactory way to assess the risks pesticide exposure poses to human health, it has certain limitations. These include changes in risk factors from day-to-day or area-to-area, differences in human exposure to pesticides, and unreliable detection tools (65,71).

Conclusion

This study investigated the concentrations of three pesticides, namely CPF, malathion, and diazinon, in both tap water and surface water in Ardabil Province. High concentrations of CPF (0.05 mg/L), malathion (0.01 mg/L), and diazinon (not detected) were detected in the distribution (tap) water network. The mean pesticide levels in tap water samples across the study area were found to be below the established standards in Iran. However, it is noteworthy that in the northeastern part of the study area, CPF levels exceeded Iran's MCL in 7 percent of the samples. The mean values of CPF, malathion, and diazinon in surface water were measured at 0.006, 0.013, and 0.003 mg/L, respectively. The highest concentrations of pesticides in surface water were observed in the northern and central regions, which had high agricultural activities. Considering noncancer risks, the HI values for drinking water samples were negligible. Sensitivity analysis highlighted that pesticide concentration, particularly for CPF, and exposure duration for malathion had the most significant impact on average daily dose (ADD) and HQ.

These findings underscore the importance of monitoring and modeling pesticide levels in public water systems to evaluate associated health risks. Furthermore, the study underscores the necessity of limiting pesticide usage in agricultural activities and promoting the adoption of environmentally friendly alternatives.

This study has several limitations. The small sample size restricted our statistical power. While the estimated risks

for the selected pesticides were lower than the EPA RfD (HQ < 1.0), this does not imply that there are no health risks. Other exposure pathways, such as inhalation and dietary intake, should also be taken into account.

Acknowledgments

The present study was conducted with the support of the Research and Technology Vice-Chancellor of Ardabil University of Medical Sciences, Iran (Project number: 1002829).

Authors' contributions

Conceptualization: Mehdi Vosoughi, Tayebe Sadeghi, Morteza Alighadri.
Data curation: Niloufar Hashemi Danesh.
Formal analysis: Zahra Atafar, Niloufar Hashemi Danesh.
Funding acquisition: Mehdi Vosoughi, Hadi Sadeghi.
Investigation: Anoshirvan Sedigh.
Methodology: Ahmad Mokhtari, Tayebe Sadeghi.
Project administration: Tayebe Sadeghi.
Resources: Mehdi Vosoughi, Morteza Alighadri.
Software: Amir Mohammadi, Zahra Atafar.
Supervision: Mehdi Vosoughi, Tayebe Sadeghi, Abdollah Dargahi.
Validation: Amir Mohammadi, Zahra Atafar.
Visualization: Amir Mohammadi, Zahra Atafar.
Writing – original draft: Tayebe Sadeghi, Amir Mohammadi.
Writing – review & editing: Tayebe Sadeghi, Amir Mohammadi, Zahra Atafar.

Competing interests

The authors declare that there is no conflict of interest regarding the publication of this work.

Ethical issues

The study was approved by the Ethics Committee of Ardabil University of Medical Sciences, Iran (Ethical code: IR.ARUMS.REC.1398.622). The authors confirm that all data were collected during the study. No data from this study have been or will be published separately elsewhere.

Funding

Ardabil University of Medical Sciences financially supported the current study (Project Number: 1002829).

Supplementary files

Supplementary file 1 contains Tables S1-S3 and Figures S1-S6.

References

1. Khairul Hasni NA, Anual ZF, Rashid SA, Syed Abu Thahir S, Veloo Y, Fang KS, et al. Occurrence of endocrine disruptors in Malaysia's water systems: a scoping review. *Environ Pollut.* 2023;324:121095. doi: [10.1016/j.envpol.2023.121095](https://doi.org/10.1016/j.envpol.2023.121095)
2. Danko T, Kiselev V. Foresight for the Development of the Food Industry Until 2030: Challenges and Search for Solutions. 2023. Available from: <https://ssrn.com/abstract=4377480>
3. Uwamahoro C, Jo JH, Jang SI, Jung EJ, Lee WJ, Bae JW, et al. Assessing the risks of pesticide exposure: implications for endocrine disruption and male fertility. *Int J Mol Sci.* 2024;25(13):6945. doi: [10.3390/ijms25136945](https://doi.org/10.3390/ijms25136945)
4. Sabzevari S, Hofman J. A worldwide review of currently used pesticides' monitoring in agricultural soils. *Sci Total Environ.* 2022;812:152344. doi: [10.1016/j.scitotenv.2021.152344](https://doi.org/10.1016/j.scitotenv.2021.152344)
5. Oerke EC. Crop losses to pests. *J Agric Sci.* 2006;144(1):31-43. doi: [10.1017/s0021859605005708](https://doi.org/10.1017/s0021859605005708)
6. FAO. Pesticides Use and Trade, 1990-2021. FAOSTAT Analytical Briefs Series No. 70. Rome: FAO; 2023.
7. Dawson AH, Eddleston M, Senarathna L, Mohamed F, Gawarammana I, Bowe SJ, et al. Acute human lethal toxicity of agricultural pesticides: a prospective cohort study. *PLoS Med.* 2010;7(10):e1000357. doi: [10.1371/journal.pmed.1000357](https://doi.org/10.1371/journal.pmed.1000357)
8. Dhananjayan V, Ravichandran B. Occupational health risk of farmers exposed to pesticides in agricultural activities. *Curr Opin Environ Sci Health.* 2018;4:31-7. doi: [10.1016/j.coesh.2018.07.005](https://doi.org/10.1016/j.coesh.2018.07.005)
9. Kumar V, Sharma N, Sharma P, Pasrija R, Kaur K, Umesh M, et al. Toxicity analysis of endocrine disrupting pesticides on non-target organisms: a critical analysis on toxicity mechanisms. *Toxicol Appl Pharmacol.* 2023;474:116623. doi: [10.1016/j.taap.2023.116623](https://doi.org/10.1016/j.taap.2023.116623)
10. Damalas CA, Koutroubas SD. Farmers' exposure to pesticides: toxicity types and ways of prevention. *Toxics.* 2016;4(1):1. doi: [10.3390/toxics4010001](https://doi.org/10.3390/toxics4010001)
11. Bao LJ, Maruya KA, Snyder SA, Zeng EY. China's water pollution by persistent organic pollutants. *Environ Pollut.* 2012;163:100-8. doi: [10.1016/j.envpol.2011.12.022](https://doi.org/10.1016/j.envpol.2011.12.022)
12. Musstjab Akber Shah Eqani SA, Malik RN, Alamdar A, Faheem H. Status of organochlorine contaminants in the different environmental compartments of Pakistan: a review on occurrence and levels. *Bull Environ Contam Toxicol.* 2012;88(3):303-10. doi: [10.1007/s00128-011-0496-4](https://doi.org/10.1007/s00128-011-0496-4)
13. Mohamed AH, Noorhisham NA, Yahaya N, Mohamad S, Kamaruzzaman S, Osman H, et al. Sampling and sample preparation techniques for the analysis of organophosphorus pesticides in soil matrices. *Crit Rev Anal Chem.* 2023;53(4):906-27. doi: [10.1080/10408347.2021.1992262](https://doi.org/10.1080/10408347.2021.1992262)
14. Dar MA, Hamid B, Kaushik G. Temporal trends in the use and concentration of organophosphorus pesticides in Indian riverine water, toxicity, and their risk assessment. *Reg Stud Mar Sci.* 2023;59:102814. doi: [10.1016/j.rsma.2023.102814](https://doi.org/10.1016/j.rsma.2023.102814)
15. Herceg Romanić S, Milićević T, Jovanović G, Matek Sarić M, Mendaš G, Fingler S, et al. Persistent organic pollutants in Croatian breast milk: an overview of pollutant levels and infant health risk assessment from 1976 to the present. *Food Chem Toxicol.* 2023;179:113990. doi: [10.1016/j.fct.2023.113990](https://doi.org/10.1016/j.fct.2023.113990)
16. Narayan S, Liew Z, Paul K, Lee PC, Sinsheimer JS, Bronstein JM, et al. Household organophosphorus pesticide use and

Parkinson's disease. *Int J Epidemiol.* 2013;42(5):1476-85. doi: [10.1093/ije/dyt170](https://doi.org/10.1093/ije/dyt170)

17. Rezg R, Mornagui B, El-Fazaa S, Gharbi N. Organophosphorus pesticides as food chain contaminants and type 2 diabetes: a review. *Trends Food Sci Technol.* 2010;21(7):345-57. doi: [10.1016/j.tifs.2010.04.006](https://doi.org/10.1016/j.tifs.2010.04.006)

18. Adigun AA, Wrench N, Seidler FJ, Slotkin TA. Neonatal organophosphorus pesticide exposure alters the developmental trajectory of cell-signaling cascades controlling metabolism: differential effects of diazinon and parathion. *Environ Health Perspect.* 2010;118(2):210-5. doi: [10.1289/ehp.0901237](https://doi.org/10.1289/ehp.0901237)

19. Bonvalot N, Tremblay-Franco M, Chevrier C, Canlet C, Warembourg C, Cravedi JP, et al. Metabolomics tools for describing complex pesticide exposure in pregnant women in Brittany (France). *PLoS One.* 2013;8(5):e64433. doi: [10.1371/journal.pone.0064433](https://doi.org/10.1371/journal.pone.0064433)

20. Mandal P, Lanaridi O, Warth B, Ansari KM. Metabolomics as an emerging approach for deciphering the biological impact and toxicity of food contaminants: the case of mycotoxins. *Crit Rev Food Sci Nutr.* 2024;64(27):9859-83. doi: [10.1080/10408398.2023.2217451](https://doi.org/10.1080/10408398.2023.2217451)

21. Possamai FP, Fortunato JJ, Feier G, Agostinho FR, Quevedo J, Wilhelm Filho D, et al. Oxidative stress after acute and sub-chronic malathion intoxication in Wistar rats. *Environ Toxicol Pharmacol.* 2007;23(2):198-204. doi: [10.1016/j.etap.2006.09.003](https://doi.org/10.1016/j.etap.2006.09.003)

22. US Environmental Protection Agency (UAEPA). Organophosphorus Cumulative Risk Assessment (2006 Update). Washington, DC: UAEPA; 2006.

23. Trovaslet-Leroy M, Musilova L, Renault F, Brazzolotto X, Misik J, Novotny L, et al. Organophosphate hydrolases as catalytic bioscavengers of organophosphorus nerve agents. *Toxicol Lett.* 2011;206(1):14-23. doi: [10.1016/j.toxlet.2011.05.1041](https://doi.org/10.1016/j.toxlet.2011.05.1041)

24. Dash DM, Osborne WJ. A systematic review on the implementation of advanced and evolutionary biotechnological tools for efficient bioremediation of organophosphorus pesticides. *Chemosphere.* 2023;313:137506. doi: [10.1016/j.chemosphere.2022.137506](https://doi.org/10.1016/j.chemosphere.2022.137506)

25. Sviridov AV, Shushkova TV, Epiktetov DO, Tarlachkov SV, Ermakova IT, Leontievsky AA. Biodegradation of organophosphorus pollutants by soil bacteria: biochemical aspects and unsolved problems. *Appl Biochem Microbiol.* 2021;57(7):836-44. doi: [10.1134/S0003683821070085](https://doi.org/10.1134/S0003683821070085)

26. Indu, Baghel AS. Evaluate the growing demand for and adverse effects of pesticides and insecticides on non-target organisms using machine learning. In: 2022 6th International Conference on Computing, Communication, Control and Automation (ICCUA). Pune: IEEE; 2022. p. 1-5. doi: [10.1109/iccubea54992.2022.10010746](https://doi.org/10.1109/iccubea54992.2022.10010746)

27. Nyantakyi JA, Wiafe S, Akoto O. Seasonal changes in pesticide residues in water and sediments from river Tano, Ghana. *J Environ Public Health.* 2022;2022:8997449. doi: [10.1155/2022/8997449](https://doi.org/10.1155/2022/8997449)

28. Montuori P, De Rosa E, Di Duca F, De Simone B, Scippa S, Russo I, et al. Occurrence, distribution, and risk assessment of organophosphorus pesticides in the aquatic environment of the Sele river estuary, Southern Italy. *Toxics.* 2022;10(7):377. doi: [10.3390/toxics10070377](https://doi.org/10.3390/toxics10070377)

29. Rendon-von Osten J, Dzul-Caamal R. Glyphosate residues in groundwater, drinking water and urine of subsistence farmers from intensive agriculture localities: a survey in Hopelchén, Campeche, Mexico. *Int J Environ Res Public Health.* 2017;14(6):595. doi: [10.3390/ijerph14060595](https://doi.org/10.3390/ijerph14060595)

30. Rokni L, Rezaei M, Rafieizonooz M, Khankhajeh E, Mohammadi AA, Rezania S. Effect of persistent organic pollutants on human health in South Korea: a review of the reported diseases. *Sustainability.* 2023;15(14):10851. doi: [10.3390/su151410851](https://doi.org/10.3390/su151410851)

31. Amrollahi H, Pazoki R, Imani S. Pesticide multiresidue analysis in tomato and cucumber samples collected from fruit and vegetable markets in Tehran, Iran. *Middle East J Rehabil Health Stud.* 2019;6(1):e64271. doi: [10.5812/mejrh.64271](https://doi.org/10.5812/mejrh.64271)

32. Yao R, Yao S, Ai T, Huang J, Liu Y, Sun J. Organophosphate pesticides and pyrethroids in farmland of the Pearl river delta, China: regional residue, distributions and risks. *Int J Environ Res Public Health.* 2023;20(2):1017. doi: [10.3390/ijerph20021017](https://doi.org/10.3390/ijerph20021017)

33. Affum AO, Acquaah SO, Osae SD, Kwaansa-Ansah EE. Distribution and risk assessment of banned and other current-use pesticides in surface and groundwaters consumed in an agricultural catchment dominated by cocoa crops in the Ankobra basin, Ghana. *Sci Total Environ.* 2018;633:630-40. doi: [10.1016/j.scitotenv.2018.03.129](https://doi.org/10.1016/j.scitotenv.2018.03.129)

34. Morteza Z, Mousavi SB, Baghestani MA, Aitio A. An assessment of agricultural pesticide use in Iran, 2012-2014. *J Environ Health Sci Eng.* 2017;15:10. doi: [10.1186/s40201-017-0272-4](https://doi.org/10.1186/s40201-017-0272-4)

35. Ardabil Meteorological Administration. 2023. Available from: <https://ardmet.ir/en/>.

36. American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater. 21st ed. Washington, DC: APHA; 2005.

37. United State Environmental Protection Agency (USEPA). Basic Information about the Integrated Risk Information System. USEPA; 2007. Available from: <https://www.epa.gov/iris/basic-information-about-integrated-risk-information-system#basicinfo>.

38. Yigit Avdan Z, Goncu S, Mızık ET. Evaluation of Trihalomethane Formation Risk Analysis in Swimming Pools in Eskisehir, Turkey. *Environ Forensics.* 2023;24(5-6):205-17. doi: [10.1080/15275922.2022.2047829](https://doi.org/10.1080/15275922.2022.2047829)

39. Ballesteros E, Parrado MJ. Continuous solid-phase extraction and gas chromatographic determination of organophosphorus pesticides in natural and drinking waters. *J Chromatogr A.* 2004;1029(1-2):267-73. doi: [10.1016/j.chroma.2003.12.009](https://doi.org/10.1016/j.chroma.2003.12.009)

40. Agency for Toxic Substances and Disease Registry (ATSDR). Public Health Statement for Diazinon. ATSDR; 2008. Available from: <https://www.atsdr.cdc.gov/toxprofiles/tp86-c1-b.pdf>.

41. Institute of Standards & Industrial Research of Iran. Physical and Chemical Properties of Drinking Water (Standard Number 1053). 5th ed. 2010. Available from: <https://www.abpsoil.com/images/Books/1053.pdf>.

42. Zhang Z, Sun X, Ren J, Zhang Y, Wen R, Pei H, et al. Serum testosterone partially mediates the adverse effects of organophosphate pesticides exposure on growth indicators

of children and adolescents. *Ecotoxicol Environ Saf*. 2025;294:118073. doi: [10.1016/j.ecoenv.2025.118073](https://doi.org/10.1016/j.ecoenv.2025.118073)

43. Sun H, Sun ML, Barr DB. Exposure to organophosphorus insecticides and increased risks of health and cancer in US women. *Environ Toxicol Pharmacol*. 2020;80:103474. doi: [10.1016/j.etap.2020.103474](https://doi.org/10.1016/j.etap.2020.103474)
44. Wu Y, Song J, Zhang Q, Yan S, Sun X, Yi W, et al. Association between organophosphorus pesticide exposure and depression risk in adults: a cross-sectional study with NHANES data. *Environ Pollut*. 2023;316(Pt 1):120445. doi: [10.1016/j.envpol.2022.120445](https://doi.org/10.1016/j.envpol.2022.120445)
45. Eddleston M, Buckley NA, Eyer P, Dawson AH. Management of acute organophosphorus pesticide poisoning. *Lancet*. 2008;371(9612):597-607. doi: [10.1016/s0140-6736\(07\)61202-1](https://doi.org/10.1016/s0140-6736(07)61202-1)
46. Shayeghi M, Khoobdel M, Vatandoost H. Determination of organophosphorus insecticides (malathion and diazinon) residue in the drinking water. *Pak J Biol Sci*. 2007;10(17):2900-4. doi: [10.3923/pjbs.2007.2900.2904](https://doi.org/10.3923/pjbs.2007.2900.2904)
47. Karyab H, Mahvi AH, Nazmara S, Bahojb A. Determination of water sources contamination to diazinon and malathion and spatial pollution patterns in Qazvin, Iran. *Bull Environ Contam Toxicol*. 2013;90(1):126-31. doi: [10.1007/s00128-012-0880-8](https://doi.org/10.1007/s00128-012-0880-8)
48. Ebrahimzadeh G, Alimohammadi M, Rezaei Kakhkha MR, Mahvi AH. Contamination level and human non-carcinogenic risk assessment of diazinon pesticide residue in drinking water resources-a case study, IRAN. *Int J Environ Anal Chem*. 2022;102(16):4726-37. doi: [10.1080/03067319.2020.1789609](https://doi.org/10.1080/03067319.2020.1789609)
49. Derbalah A, Ismail A, Shaheen S. Monitoring of organophosphorus pesticides and remediation technologies of the frequently detected compound (chlorpyrifos) in drinking water. *Pol J Chem Technol*. 2013;15(3):25-34. doi: [10.2478/pjct-2013-0040](https://doi.org/10.2478/pjct-2013-0040)
50. Yousefi M, Akbari H, Adibzadeh A, Mohammadi AA, Bazzar M, Abbasi Farajzadeh M, et al. Adsorption of diazinon from aqueous solution using metal organic framework and functionalized graphene: comparison of BBD, ANN models. *Chemosphere*. 2024;351:141222. doi: [10.1016/j.chemosphere.2024.141222](https://doi.org/10.1016/j.chemosphere.2024.141222)
51. Fu Y, Dou X, Lu Q, Qin J, Luo J, Yang M. Comprehensive assessment for the residual characteristics and degradation kinetics of pesticides in *Panax notoginseng* and planting soil. *Sci Total Environ*. 2020;714:136718. doi: [10.1016/j.scitotenv.2020.136718](https://doi.org/10.1016/j.scitotenv.2020.136718)
52. Hassaan MA, El Nemr A. Pesticides pollution: classifications, human health impact, extraction and treatment techniques. *Egypt J Aquat Res*. 2020;46(3):207-20. doi: [10.1016/j.ejar.2020.08.007](https://doi.org/10.1016/j.ejar.2020.08.007)
53. Elfikrie N, Ho YB, Zaidon SZ, Juahir H, Tan ES. Occurrence of pesticides in surface water, pesticides removal efficiency in drinking water treatment plant and potential health risk to consumers in Tengi river basin, Malaysia. *Sci Total Environ*. 2020;712:136540. doi: [10.1016/j.scitotenv.2020.136540](https://doi.org/10.1016/j.scitotenv.2020.136540)
54. Zare S, Behzadi M, Tarzanan M, Mohamadi MB, Omidi L, Heydarabadi AB, et al. The impacts of pesticides on the health of farmers in Fasa, Iran. *Electronic physician*. 2015;10;7(4):1168. doi: [10.14661/2015.1168-1173](https://doi.org/10.14661/2015.1168-1173)
55. Safari M, Ahmadfazeli A, Vatandoost H, Karimaei M, Panahi D, Shokri M, et al. Investigating on the residue of organophosphate pesticides in the water of the Hablehrood river, Garmsar, Iran. *J Arthropod Borne Dis*. 2020;14(3):250-60. doi: [10.18502/jad.v14i3.4558](https://doi.org/10.18502/jad.v14i3.4558)
56. Fadaei A, Dehghani MH, Nasser S, Mahvi AH, Rastkari N, Shayeghi M. Organophosphorous pesticides in surface water of Iran. *Bull Environ Contam Toxicol*. 2012;88(6):867-9. doi: [10.1007/s00128-012-0568-0](https://doi.org/10.1007/s00128-012-0568-0)
57. Zarei-Choghan M, Jorfi S, Saki A, Jaafarzadeh N. Spatial distribution, ecological and health risk assessment of organophosphorus pesticides identified in the water of Naseri artificial wetland, Iran. *Mar Pollut Bull*. 2022;179:113643. doi: [10.1016/j.marpolbul.2022.113643](https://doi.org/10.1016/j.marpolbul.2022.113643)
58. Nag SK, Saha K, Bandopadhyay S, Ghosh A, Mukherjee M, Raut A, et al. Status of pesticide residues in water, sediment, and fishes of Chilika lake, India. *Environ Monit Assess*. 2020;192(2):122. doi: [10.1007/s10661-020-8082-z](https://doi.org/10.1007/s10661-020-8082-z)
59. Panis C, Candiotti LZ, Gaboardi SC, Gurzenda S, Cruz J, Castro M, et al. Widespread pesticide contamination of drinking water and impact on cancer risk in Brazil. *Environ Int*. 2022;165:107321. doi: [10.1016/j.envint.2022.107321](https://doi.org/10.1016/j.envint.2022.107321)
60. Sang C, Yu Z, An W, Borgen Sørensen P, Jin F, Yang M. Development of a data driven model to screen the priority control pesticides in drinking water based on health risk ranking and contribution rates. *Environ Int*. 2022;158:106901. doi: [10.1016/j.envint.2021.106901](https://doi.org/10.1016/j.envint.2021.106901)
61. Kruc-Fijałkowska R, Dragon K, Drozdzyński D, Górska J. Seasonal variation of pesticides in surface water and drinking water wells in the annual cycle in western Poland, and potential health risk assessment. *Sci Rep*. 2022;12(1):3317. doi: [10.1038/s41598-022-07385-z](https://doi.org/10.1038/s41598-022-07385-z)
62. Vasseghian Y, Dragoi EN, Almomani F, Golzadeh N, Vo DN. A global systematic review of the concentrations of Malathion in water matrices: meta-analysis, and probabilistic risk assessment. *Chemosphere*. 2022;291(Pt 2):132789. doi: [10.1016/j.chemosphere.2021.132789](https://doi.org/10.1016/j.chemosphere.2021.132789)
63. de Almeida CC, Dos Santos Baião D, de Almeida Rodrigues P, Saint'Pierre TD, Hauser-Davis RA, Leandro KC, et al. Toxic metals and metalloids in infant formulas marketed in Brazil, and child health risks according to the target hazard quotients and target cancer risk. *Int J Environ Res Public Health*. 2022;19(18):11178. doi: [10.3390/ijerph191811178](https://doi.org/10.3390/ijerph191811178)
64. Kazemi Moghaddam V, Latifi P, Darrudi R, Ghaleh Askari S, Mohammadi AA, Marufi N, et al. Heavy metal contaminated soil, water, and vegetables in northeastern Iran: potential health risk factors. *J Environ Health Sci Eng*. 2022;20(1):65-77. doi: [10.1007/s40201-021-00756-0](https://doi.org/10.1007/s40201-021-00756-0)
65. Mohammadi A, Ghassoun Y, Löwner MO, Behmanesh M, Faraji M, Nemati S, et al. Spatial analysis and risk assessment of urban BTEX compounds in Urmia, Iran. *Chemosphere*. 2020;246:125769. doi: [10.1016/j.chemosphere.2019.125769](https://doi.org/10.1016/j.chemosphere.2019.125769)
66. Parveen N, Chowdhury S, Goel S. Probabilistic approach for health hazard assessment of trihalomethanes through successive showering events. *Environ Sci Pollut Res Int*. 2023;30(10):24793-803. doi: [10.1007/s11356-021-17087-0](https://doi.org/10.1007/s11356-021-17087-0)
67. Kim I, Lee K, Lee S, Kim SD. Characteristics and health effects of PM2.5 emissions from various sources in Gwangju, South Korea. *Sci Total Environ*. 2019;696:133890. doi: [10.1016/j.scitotenv.2019.133890](https://doi.org/10.1016/j.scitotenv.2019.133890)

68. Bakr A, Mahmoud HA, Ghanem KM, Eissa FI. Monitoring and risk assessment of organophosphorus pesticide residues in surface and drinking water in some Egyptian governorates. *Egypt J Chem*. 2023;66(13):77-87. doi: [10.21608/ejchem.2023.210533.7967](https://doi.org/10.21608/ejchem.2023.210533.7967)

69. Ganaie MI, Jan I, Mayer AN, Dar AA, Mayer IA, Ahmed P, et al. Health risk assessment of pesticide residues in drinking water of upper Jhelum region in Kashmir valley- India by GC-MS/MS. *Int J Anal Chem*. 2023;2023:6802782. doi: [10.1155/2023/6802782](https://doi.org/10.1155/2023/6802782)

70. Taheri E, Amin MM, Daniali SS, Abdollahpour I, Fatehizadeh A, Kelishadi R. Health risk assessment of exposure to chlorpyrifos in pregnant women using deterministic and probabilistic approaches. *PLoS One*. 2022;17(1):e0262127. doi: [10.1371/journal.pone.0262127](https://doi.org/10.1371/journal.pone.0262127)

71. Mohammadi A, Faraji M, Ebrahimi AA, Nemati S, Abdolahnejad A, Miri M. Comparing THMs level in old and new water distribution systems; seasonal variation and probabilistic risk assessment. *Ecotoxicol Environ Saf*. 2020;192:110286. doi: [10.1016/j.ecoenv.2020.110286](https://doi.org/10.1016/j.ecoenv.2020.110286)