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Abstract
Background: One issue of concern in water supply is the quality of water. Measuring the qualitative 
parameters of water is time-consuming and costly. Predicting these parameters using various models 
leads to a reduction in related expenses and the presentation of overall and comprehensive statistics for 
water resource management. 
Methods: The present study used an artificial neural network (ANN) to simulate fluoride concentrations 
in groundwater resources in Khaf and surrounding villages based on the physical and chemical 
properties of the water. ANN modeling was applied with regard to diverse inputs.
Results: The MLP1 model with eight inputs of parameters such as root mean square error (RMSE) and 
correlation coefficient of actual and predicted outputs exhibited the best results. The lowest fluoride 
concentration (0.15 mg L-1) was found in Sad village, and the highest concentration (3.59 mg L-1) was 
found in Mahabad village. Based on World Health Organization (WHO) standards, 56.6% of the villages 
are in the desirable range, 33.3% of them had fluoride concentrations below standard levels, and 10% 
had higher than standard concentrations of fluoride. 
Conclusion: The simulation results from the testing stage for MLP1 as well as the high conformity 
between experimental and predicted data indicated that this model with its high confidence coefficient 
can be used to predict fluoride concentrations in groundwater resources. 
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Introduction
The provision of qualified drinking water is a noteworthy 
issue in today’s world. One of the qualitative factors 
considered in water is fluoride (1-3). Fluoride is one of the 
fourteen elements necessary for human life and affecting 
growth and fertility (4). After entering the body, fluoride 
rapidly rushes into extracellular and intracellular fluid, 
and its surplus concentration is stored in bones and teeth 
or excreted in urine (5). It has long been known that the 
addition of fluoride to water equal to one milligram per 
liter and to toothpaste reduces tooth decay by 20% (5). 
The World Health Organization (WHO) recommends 
that the appropriate fluoride concentration to be added 
to water is between 0.5 and 1 mg L-1 (6). Concentrations 

greater than 7.1 mg L-1 cause fluorosis, and concentrations 
higher than 3-6 mg L-1 cause bone problems (7). Excessive 
intake of fluoride causes such complications as gastro-
intestinal disorders, loss of teeth in young adults, increase 
in hip fractures in aged people, immune system disorders, 
learning disorders, and low-IQ (8). 
Computer models are useful tools for water resource 
management (9). Such models were established for use in 
monitoring and managing water resources (10,11), and 
their use can be of great help to the quality management of 
groundwater resources (12). Increasing the development 
of computational approaches such as artificial intelligence 
and using artificial neural networks inspired by the human 
brain structure have been widely applied in studies related 
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to predicting the diverse parameters of water resources. 
Researchers have approved the high precision of these 
methods compared with experimental and regression 
methods (13,14). These models are very attractive because 
of their ability to solve nonlinear, too parallel, voluminous, 
and erroneous problems. Moreover, they have the ability 
to solve phase problems and recognize patterns (15). 
The artificial neural network (ANN) was proposed for the 
first time by McCulloch and Pitts; it was then completed 
by other investigators (16). ANN is the simulation of 
a natural neural network that includes a set of neural 
units known as a neuron which is connected by a series 
of connections known as axons. ANN tries to design a 
structure similar to the biological structure of the human 
brain and nervous system so that it can have the same 
power of learning, generalization, and decision-making 
(17).
Among the studies conducted in the area of applying 
ANNs in problems such as water quality, noteworthy 
is the study by Hore et al on the application of a neural 
network to estimate the affective parameters of water 
pollution in the Tolly channel in India (18). Huiqun 
and Ling conducted a study in China and examined the 
quality of Chung Dong river water by an ANN and fuzzy 
logic (19). Kunwar et al used a perceptron neural network 
in modeling the qualitative parameters of Gomti in India 
and benefited from its efficiency (20). Sandhu and Finch 
also approved the ANN’s ability to make daily and real 
predictions of different levels of salt in water basins as well 
as its ability to estimate concentrations of cation and anion 
and amounts of EC and TDS in these basins (21). Walley 
and Fontana conducted a study in England to examine the 
water quality of rivers in Britain using an ANN based on 
the back propagation algorithm and found a precision of 
95.62% (22). 
The aims of the current study were to use an ANN 
to predict fluoride concentrations in water resources 
and to attempt to establish the multilayer structure of 
a perceptron neural network for modeling fluoride by 
certain physical and chemical parameters of water. The 
neural network learning opportunities for parametric 
modeling of fluoride using qualitative parameters of water 
were also evaluated.

Methods
Studied region
Khaf is a city in Khorasan Razavi province and is located 
at 59528 to 60556 longitude and 33540 to 35505 latitude. 
It has an area of 9797 km2 and a population of more than 
100 000 people. The city also shares a border of about 120 
km with Afghanistan (23). The study area is shown in 
Figure 1. Data from Khaf ’s meteorological station showed 
that in the 7-year period from 2006 to 2012, the average 
rainfall was 123.6 mm.

Methodology
This work was a descriptive cross-sectional study. 
Sampling was implemented during 2009-2010. In this 

study, 6 samples were collected from each of 30 water 
sources examined (30 × 6 = 180). Of the 180 samples, 4 
were excluded due to non-standard conditions during 
transport to the laboratory. Finally, 176 samples were 
investigated. Samples were collected in polyethylene 
bottles and transported under standard conditions to 
the laboratory. Samples were taken in the two seasons of 
autumn (low rainfall) and spring (high rainfall). Fourteen 
parameters were analyzed. All sampling and data analyses 
were conducted based on the standard methods of water 
and wastewater management (24). Experiments were 
administered in 2 categories of machine and titrimetric 
experiments at the water and sanitation laboratory in 
Torbat-Heydariye.

Artificial neural networks 
The ANN structure model in this study was composed of 
3 distinct layers. Figure 2 shows the ANN structure. The 
input layer is introduced to the model by input layer data 
in which all input layers are weighted. The hidden layer 
or layers are where the data is processed, and the output 
layers produce results. Each layer is composed of one or 
more basic element named a “neuron” or “node”. Each 
neuron has a threshold and an activity function, both of 
which are important to the training process (25). A single-
layer network is shown in Figure 3.
A perceptron layer is composed of 𝓃1 units (an input 

Figure 1. Study area of Khaf city.
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layer), 𝓃2 units (a hidden layer), and 𝓃3 units (an output 
layer). Based on Figure 2, (𝓍3, k, k = l, n3) outputs are 
calculated according to Equations 1 and 2, as follows (20):
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When 𝓍l, o = 0, a constant value is always used to calculate 
the output of the hidden layer. 𝓍l (i=l, n1-1), and 𝓍2,j (j 
= l, n2-1) are the input and output of the hidden layer, 
respectively. 𝓌2,i,j (i = l, n1-1 j=l, n2-1) are the weights 
of the output and hidden layers which are used in the 
calculation of the hidden layer output. Also, 𝓌3,j,k (i = l, 
n2-l = l, n3) show the hidden and output weights that are 
used in calculating the output layer output. An example 
of the non-linear transfer function [f (y)] in this study is 
the sigmoid function defined according to Equation 3, as 
follows:
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Where k is the parameter of determinative of the 
f(y) reaction. In this analysis, k is constant due to its 
incompatibility with the propagation algorithm. Input 
and output values should be normalized between 0 and 
1. The mean squared error between the output data of tp,k 
network and desirable outputs of 𝓍3,k are defined according 
to Equation 4 as follows:

n
2

p p,k 3,k
k l

1E (t x )
2 =

= −∑                                                        (4)

Weights (w) and threshold values (o) are balanced by error 
transmission from the output layer to the hidden layer 
and from the hidden layer to the input layer according to 
Equations 5 to 8 as follows:
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Where n is training speed and α is inertia coefficient. Also, 
W(M) shows that weights were calibrated M times. The 
inertia coefficient was used to avoid problems resulting 
from the occurrence of local minima and acceleration 
of convergence. Most neural network studies conducted 
on hydrology issues use a type of propagation algorithm. 
To simulate the fluoride concentrations in groundwater 
in the surrounding villages of Khaf, the single layer 
perceptron network with a back propagation algorithm 
was implemented in MATLAB R2014a software, Neural 
Network. To determine the optimal network architecture, 
the trial and error method was implemented using diverse 
network tests with the lowest error rate and the highest 
correlation coefficient.

Data categorization
In this study, 70% of the data was selected for model 
training, 10% for validation, and 20% for model testing. 
Training procedures (including weights) change over time 
between different levels; training was conducted as though 
the difference between actual data (for training data) and 
predicted data was minimized.

Input data
To predict fluoride concentrations with a multilayer 
perceptron (MLP) ANN based on the physical and 
chemical parameters of water, three models were 
considered. In the first, second, and third models, there 
were 5, 6, and 13 variables, respectively. In these models, 
fluoride concentration was the target element. Table 1 
shows the entry information of these models.

Analysis
To compare the physical properties of the predicted values 
with the laboratory measurements and the accuracy of 
the available models, the parameters of coefficient of 
determination (R2) and root mean square error (RMSE) 
were applied (Equations 9 and 10).
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where Z is the predicted values in the ith point, Z* is the 
mean predicted value for properties, Z is observed values 
for the ith point, and N is the number of studied samples. 
The data was analyzed using Excel software.

Results 
To predict fluoride concentrations by MLP ANN based 
on the physical and chemical parameters of water, three 

Figure 3. Single-layer perceptron neural network
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models were considered. In the first model (MLP1), 5 inputs 
(pH, Tem, EC, TDS, and TH) were defined. In the second 
model (MLP2), 6 inputs including anions and cations in 
water (Cl, SO4

-2, HCO3
-, Ca+2, Mg+2, Na) were measured. 

In the third model (MLP3), all variables measured in 
the water were defined (pH, Tem, EC, TDS, TH, Ca. H, 
Alkalinity, Cl, SO4

-2, HCO3
-, Ca+2, Mg+2, Na). Fluoride 

concentration was the target element in all three models. 
During the training process of the models, the most 
appropriate number of neurons was in the hidden layer, 
and the most useful function for increasing the accuracy 
of the learning process was selected from the hidden 
layer neurons using the trial and error method. Table 2 to 
Table 4 give information about the model, and modeling 
results are demonstrated in Table 5. To teach data in the 
training phase (train), the Levenberg-Marquardt (LM) 
algorithm was used. The results of structures designed in 
the MLP neural network architecture indicated that the 
most appropriate functions used in the hidden layer were 

triangle (Tribas) and hyperbolic tangent (Tansig) types. 
The linear function (Purelin) was applied in the output 
layer.
According to Table 4, the MLP neural network with its 
low values for RMSE and high values for coefficient of 
determination for modeling and predicting fluoride in 
MLP1, performed better than the other two models. As 
shown in Figure 4, the modeling implemented by the MLP 
neural network predicted data that had high conformity 
with the laboratory measured data, which indicates that 
the implemented modeling could properly estimate 
fluoride content using different intended inputs.
As seen in Table 6, the lowest fluoride concentration of 
0.15 mg L-1 was found in Saddeh village, and the highest 
concentration of 3.59 mg L-1 was found in Mahabad 
village. Based on WHO standards, 56.6% of villages 
are in the desirable range, 33.3% of them had fluoride 
concentrations lower than standard levels, and 10% had 
fluoride levels higher than standard. Maximum pH was 

Table 1. Description of models used for Zn fractions modeling

Model Inputs Output
MLP structure

Neuron in hidden layer HLTF* OLTF* Description
MLP1 pH, Tem, EC, TDS, TH F- 4 Tribas Purelin LM algorithm**
MLP2 Cl, SO4

-2, HCO3
-, Ca+2, Mg+2, Na F- 4 Tansig Purelin LM algorithm

MLP3 pH, Tem, EC, TDS, TH, Ca. H, Alka, Cl, SO4
-2, HCO3

-, Ca+2, Mg+2, Na F- 7 Tribas Purelin LM algorithm

Table 2. Input data statistics in training and testing stages used for modeling and predicting fluoride (MLP1)

Model Level Des. pH TH TDS EC Turbidity Temperature

Max 8.31 748 6550 4037 141.2 24.5
Train Min. 7.2 53 287.17 391 0.25 12.8

MLP1 Mean 7.95 220.41 1365.50 1531.67 7.16 21.99
Max 8.31 748 6550 4037 142 24.1

Test Min. 7.61 55 287.17 391 0.24 22.6

Mean 7.99 224.62 1383.97 1492.66 15.04 23.08

Table 3. Input data statistics in training and testing stages used for modeling and predicting fluoride (MLP2)

Model Level Des. Na Mg+2 Ca+2 HCO3
- SO4

-2 Cl-

Max 1162.5 66.7 188.63 375.5 942.08 1543

Train Min. 10.2 3 14 148.86 36.11 11.57
MLP2 Mean 293.78 21.64 48.29 221.68 297.13 241.44

Max 1162.5 57.55 204.6 375.5 942.08 1543
Test Min. 25.2 8.26 23.63 148.86 36.11 26.16

Mean 350.29 20.18 53.09 217.10 365.42 360.25

Table 4. Input data statistics in training and testing stages used for modeling and predicting fluoride levels (MLP3)

Model Level Des. Na Mg+2 Ca+2 HCO3
- SO4

-2 Cl- Alka Ca. H TH TDS EC Tur Tem pH

Max 1162.5 66.7 204.6 375.5 942.08 1543 308 511 748 6550 4037 140.4 24.1 8.31

Train Min. 10.2 3 14 148.86 36.11 11.57 122 36 55 287.17 391 0.24 13.8 7.3
MLP3 Mean 322.81 21.62 51.01 220.97 325.65 286.32 181.02 133.62 226.47 1436.72 1581.02 9.69 22.70 7.96

Max 1055 66.7 188.63 358 942.08 1261 294 471 548 5560 3930 140.4 24.1 8.31
Test Min. 10.2 4.4 14 165.95 70.07 11.57 136 36 55 449.5 453.71 0.24 22.6 6.9

Mean 300.43 21.13 53.15 218.51 337.61 253.14 180.71 136.6 228.42 1340.55 1529.71 5.88 23.12 7.98
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related to Shahrak village with 8.31, and minimum pH 
was related to Mahabad village with 7.42. All samples were 
in normal condition and had a tendency for alkalinity, 
which made the water unsuitable for drinking. The results 
also showed that the highest concentration of nitrate 
ion (83 mg L-1) was found in Ebrahimi vllage, and the 
lowest concentration (1.54 mg L-1) was found in Shahrak 
village. Moreover, the highest concentrations of sulfate 
and chloride ions were related to Mahabad and Bonyabad 
villages with 942 and 1543 mg L-1, respectively, and the 
lowest concentrations were related to Ahmadabad and 
Shahrak villages, both of which measured 36 mg L-1.

Discussion
ANN was used to predict fluoride concentrations. Three 
prediction models were applied using various input 
variables. Previous research has shown that neural network 
performance changes according to its structure as well 
as the nature under study. By selecting the appropriate 
type, number of inputs, a proper and adaptable type of 
ANN, a proper and efficient technique was established 
for estimating the fluoride concentrations in groundwater 
resources in Khaf and surrounding villages. The current 
study achieved the application of ANN with a multilayer 
perception structure based on the LM algorithm and 
propagation method. The findings indicated the neural 
network’s acceptable ability to simulate fluoride in 
groundwater resources. Based on the results of network 
performance, the best model was found to be MLP1. Of 
the three recommended models, MLP1 exhibited the 
most proper structure, and its inputs included pH, Tem, 
EC, TDS, and TH. Although it has been said that neural 
network performance is improved by increasing the 

Table 5. Results of fluoride modeling using the physical and 
chemical properties of water

Models
Train Validation Test

RMSE R2 RMSE R2 RMSE R2

MLP1 0.11 0.98 0.11 0.94 0.23 0.93
MLP2 0.17 0.88 0.20 0.96 0.25 0.82
MLP3 0.19 0.88 0.21 0.86 0.26 0.79

Table 6. Physical and chemical parameters of drinking water reservoirs under study in villages surrounding Khaf city in 2009-2010

Code Name of village pH Alkha Tur. EC TDS TH Ca. H NO3
- NO2 SO4-2 Cl- F- Ca+2 Mg+2 Na+

1 Mahabad 8.2 190 0.71 2070 1336 105 59 19.3 0.01 500 170 1.26 24 11 392

2 Seidabad 8 147 0.94 484 572 105 67 9.7 0.01 117 86 0.98 27 9 149

3 Chamanabad 7.8 188 0.33 944 661 317 178 9.9 0.01 166 78 0.75 71 34 77

4 KHalilabad 8 151 0.48 765 525 208 113 5.45 0.01 123 66 0.31 45 23 80

5 Hasanabad 8 151 0.26 918 620 216 121 3.86 0.01 166 78 0.38 49 23 117

6 Ahmadabad 8 122 2.24 391 287 141 83 9.1 0.01 36 26 0.17 33 14 25

7 Aliabad 8.2 155 0.24 622 449 97 53 3086 0.01 85 41 0.44 21 11 100

8 Mahabad 8 190 0.49 1405 991 97 63 15.6 0.01 333 114 0.63 25 8.2 269.2

9 Sarab 7.9 147 40.4 693 693 240 139 2.78 0.07 157 39 0.49 56 24.5 54

10 KHargerd 8 194 0.25 138 514 198 93 11.8 0.01 216 192 0.71 37 25.5 217

11 Biasadabad 8.1 151 0.92 1266 931 157 75 14.3 0.02 164 194 0.85 30 15 212

12 Baghebakhshi 8 160 0.62 1375 807 103 67 40.9 0.02 256 151 27 8.7 256

13 Kalshor 8.1 294 2.5 2260 906 186 111 33.2 0.01 394 283 0.93 45 18.2 406

14 Zozon 7.9 212 41.8 3930 1517 345 261 67.7 0.39 594 756 1.1 104 20.2 682

15 Tizab 7.5 147 1.94 3040 2434 523 248 19.8 0.01 740 398 0.98 99 66 499

16 Faindar 7.9 181 0.33 736 549 210 91 7.3 0.02 145 34 0.44 36.5 28.9 79.6

17 CHahe gaji 8 203 0.5 1037 696 55 36 22.5 0.02 131 22 0.76 14 4.4 206

18 Berabad 8 173 0.5 1675 1063 188 91 11.2 0.02 246 268 0.89 36 23 271

19 Ebrahimi 8 162 1 3010 1904 135 95 83 0.02 599 446 1.68 38 9.7 590

20 Mehrabad 7.4 198 7.25 680 1019 152 72 8.93 0.32 102 128 0.56 28 19.43 155.1

21 Shahrak 8.3 221 0.45 454 584 283 139 1.54 0.02 70 11 0.32 55 34.97 10

22 Sijavand 7.8 202 0.3 287 834 281 166 8.45 0.05 112 54 0.9 66 27.93

23 KHeirabad 8.21 210 0.87 579 783 337 182 4.22 0.01 149 19 1 72 37.6 40

24 Saddeh 8 163 0.35 471 663 202 119 4.99 0.01 85.96 49 0.15 47 20 67

25 Bandivan 8.04 223 0.34 472 599 249 121 2.11 0.01 71.4 13 0.53 48 31.8 30

26 GHaleno 8.3 175 0.52 476 1134 218 123 12.5 0.01 179.5 122 0.75 49 23.7 172

27 Mojanabad 8.3 175 0.47 2180 3590 194 99 1.82 0.01 456 730 1.48 39 23.7 711

28 Hasanabad 8.2 308 0.34 1694 2600 98 59 28.3 0.01 232 377 1.64 23.6 9.47 566

29 Mahabad 8.23 190 0.35 2242 3440 123 79 25.9 0.01 942 311 3.59 31.6 10.68 703

30 Dehekhatib 8.2 136 0.42 1142 762 162 78 11.7 0.02 153 101 0.38 34.8 18.21 190
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number of parameters (26), performance largely depends 
on the correlation between the variables; fewer inputs 
resulted in better results in this study, and that represents a 
savings in time and costs. The LM learning function used 
the model for necessary predictions in this model, because 
previous studies had indicated that the LM model exhibits 
higher learning speed and reduced error. Samani et al 
highlighted the efficiency of a neural network with the 
LM algorithm in predicting and simulating parameters of 
groundwater resources (27).
Asghari Moghadam et al applied ANN models as nonlinear 
models. Different model structures were evaluated, and 
FNN-BFG was identified as the best structure for spatial 
prediction of fluoride concentrations in the region. The 
findings also showed that fluoride concentrations in the 
water reservoirs of Bazargan and Pelkdahst plains were 
higher than the WHO standard. To compare the results 
of the aforesaid structure with geostatistical methods, two 
kriging and co-kriging methods were also applied. The R2 
values of 0.7285 and 0.8556 were selected for the testing 
stage. From the three studied models, the most accurate 
estimate of fluoride concentration was obtained by ANN 
with the selected model (28). Dar et al predicted fluoride 
concentrations using an MLP algorithm in which they 
developed five models with 8 parameters. They considered 
various inputs for each model. Ultimately, their best model 
had pH, chloride, sulfate, and calcium inputs, but their 
results are inconsistent with those of the present paper. It 
may be concluded that different local conditions in each 
region cause differing results, because neural network 
models make better predictions for parameters with the 
highest relations (29). A study by Nemati et al implemented 
ANN modeling in TDS concentrations in the Simineh 
river, Iran. In that study, they evaluated the current water 

Figure 4. Comparative measured and predicted diagrams for 
fluoride modeling using certain physical and chemical properties 
in testing stage: A. MLP1, B. MLP2, and C. MLP3.

quality and predicted future conditions of this river using 
ANN model performance based on RMSE, mean absolute 
error (MAE), and R2. They found that ANNs are made 
in different numbers of neural cells in hidden layers. 
A model with 14 hidden layers was selected as the best 
one. The comparison of measured and predicted values 
showed that the ANN model could be used with a high 
level of success, precision, and reliability to determine and 
predicted water quality (30). Derakhshan et al conducted 
a study to simulate underground water salinity using the 
LM algorithm and method of propagation on Mazandaran 
beaches. The findings showed that, in the best network 
structure, the R2 between simulated and actual values 
was equal to 0.75. Moreover, the factors of surface water 
salinity, aquifer organization transmissivity (texture and 
structure), and distance from the sea are the most proper 
inputs for simulating underground water salinity and were 
also the main causes of it on Mazandaran beaches. Finally, 
the researchers indicated that among all algorithms, LM 
algorithm showed the best efficiency in predicting water 
salinity (14). A study by Krishna et al examined the 
efficiency of a neural network with the LM algorithm 
and propagation method in estimating and forecasting 
qualitative and quantitative parameters of groundwater 
(31). Mirzavand et al predicted levels of underground water 
using ANN in which the LM algorithm and hyperbolic 
tangent function rendered the best results among the 
studied models (30). Cordoba et al predicted the chlorine 
concentration in WDS using statistical models based on 
ANN in combination with Monte-Carlo. The model was 
tested on one specific location using hydraulic and water 
quality parameters such as flow, pH, temperature, and 
others. The ANN model was used with significant success 
and reliability to determine and predict water quality (32). 
A study by Sarkar et al implemented ANN modeling in 
an investigation of DO concentrations in stream water 
quality. The predicted values of DO showed prominent 
accuracy by producing high correlations (up to 0.9) 
between the measured and predicted values (33). Seo et al 
predicted water quality parameters (temperature, DO, pH, 
electric conductivity, TN, TP, turbidity, and chlorophyll-a) 
downstream of the Cheongpyeong Dam using ANN. Seven 
parameters (temperature, DO, pH, electric conductivity, 
TN, TP, and chlorophyll-a) all had values higher than 0.85 
R2, and 5 parameters (temperature, DO, pH, TN, and TP)
showed lower than 1.0 RMSE (34).

Conclusion
The present study aimed to predict and model fluoride 
concentrations in underground water resources in Khaf 
city and surrounding villages using ANN software. 
Fourteen water features were measured as inputs and 
categorized in three models. Among the three models 
implemented by the software, model 1, designed with 
the LM algorithm based on the propagation system, 
provided the best results calculating a RMSE of 0.23 and a 
correlation coefficient equal to 0.93. Simulation results in 
the testing stage for MLP1 as well as the high conformity 
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number of parameters (26), performance largely depends 
on the correlation between the variables; fewer inputs 
resulted in better results in this study, and that represents a 
savings in time and costs. The LM learning function used 
the model for necessary predictions in this model, because 
previous studies had indicated that the LM model exhibits 
higher learning speed and reduced error. Samani et al 
highlighted the efficiency of a neural network with the 
LM algorithm in predicting and simulating parameters of 
groundwater resources (27).
Asghari Moghadam et al applied ANN models as nonlinear 
models. Different model structures were evaluated, and 
FNN-BFG was identified as the best structure for spatial 
prediction of fluoride concentrations in the region. The 
findings also showed that fluoride concentrations in the 
water reservoirs of Bazargan and Pelkdahst plains were 
higher than the WHO standard. To compare the results 
of the aforesaid structure with geostatistical methods, two 
kriging and co-kriging methods were also applied. The R2 
values of 0.7285 and 0.8556 were selected for the testing 
stage. From the three studied models, the most accurate 
estimate of fluoride concentration was obtained by ANN 
with the selected model (28). Dar et al predicted fluoride 
concentrations using an MLP algorithm in which they 
developed five models with 8 parameters. They considered 
various inputs for each model. Ultimately, their best model 
had pH, chloride, sulfate, and calcium inputs, but their 
results are inconsistent with those of the present paper. It 
may be concluded that different local conditions in each 
region cause differing results, because neural network 
models make better predictions for parameters with the 
highest relations (29). A study by Nemati et al implemented 
ANN modeling in TDS concentrations in the Simineh 
river, Iran. In that study, they evaluated the current water 
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Figure 4. Comparative measured and predicted diagrams for 
fluoride modeling using certain physical and chemical properties 
in testing stage: A. MLP1, B. MLP2, and C. MLP3.

quality and predicted future conditions of this river using 
ANN model performance based on RMSE, mean absolute 
error (MAE), and R2. They found that ANNs are made 
in different numbers of neural cells in hidden layers. 
A model with 14 hidden layers was selected as the best 
one. The comparison of measured and predicted values 
showed that the ANN model could be used with a high 
level of success, precision, and reliability to determine and 
predicted water quality (30). Derakhshan et al conducted 
a study to simulate underground water salinity using the 
LM algorithm and method of propagation on Mazandaran 
beaches. The findings showed that, in the best network 
structure, the R2 between simulated and actual values 
was equal to 0.75. Moreover, the factors of surface water 
salinity, aquifer organization transmissivity (texture and 
structure), and distance from the sea are the most proper 
inputs for simulating underground water salinity and were 
also the main causes of it on Mazandaran beaches. Finally, 
the researchers indicated that among all algorithms, LM 
algorithm showed the best efficiency in predicting water 
salinity (14). A study by Krishna et al examined the 
efficiency of a neural network with the LM algorithm 
and propagation method in estimating and forecasting 
qualitative and quantitative parameters of groundwater 
(31). Mirzavand et al predicted levels of underground water 
using ANN in which the LM algorithm and hyperbolic 
tangent function rendered the best results among the 
studied models (30). Cordoba et al predicted the chlorine 
concentration in WDS using statistical models based on 
ANN in combination with Monte-Carlo. The model was 
tested on one specific location using hydraulic and water 
quality parameters such as flow, pH, temperature, and 
others. The ANN model was used with significant success 
and reliability to determine and predict water quality (32). 
A study by Sarkar et al implemented ANN modeling in 
an investigation of DO concentrations in stream water 
quality. The predicted values of DO showed prominent 
accuracy by producing high correlations (up to 0.9) 
between the measured and predicted values (33). Seo et al 
predicted water quality parameters (temperature, DO, pH, 
electric conductivity, TN, TP, turbidity, and chlorophyll-a) 
downstream of the Cheongpyeong Dam using ANN. Seven 
parameters (temperature, DO, pH, electric conductivity, 
TN, TP, and chlorophyll-a) all had values higher than 0.85 
R2, and 5 parameters (temperature, DO, pH, TN, and TP)
showed lower than 1.0 RMSE (34).

Conclusion
The present study aimed to predict and model fluoride 
concentrations in underground water resources in Khaf 
city and surrounding villages using ANN software. 
Fourteen water features were measured as inputs and 
categorized in three models. Among the three models 
implemented by the software, model 1, designed with 
the LM algorithm based on the propagation system, 
provided the best results calculating a RMSE of 0.23 and a 
correlation coefficient equal to 0.93. Simulation results in 
the testing stage for MLP1 as well as the high conformity 
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between experimental and predicted data indicate that 
this model with its high confidence coefficient can be 
used to predict fluoride concentrations. 
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