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Abstract
Background: Car wash wastewater contains several contaminants such as organic matter, oil, grease, 
detergents and phosphates, all of which are harmful for the environment. In this study, the application 
of electrocoagulation (EC) to treat car wash wastewater has been studied, and the operating parameters 
optimized. The electro-Fenton (EF) for further contaminant removal was also investigated.
Methods: In EC process, the effect of pH, current density, and the reaction time of the removal 
efficiency of chemical oxygen demand (COD), phosphate, and turbidity were investigated using the 
response surface methodology (RSM). The electrochemical cell consisted of four iron electrodes that 
were connected to a power supply using a monopolar arrangement. In the EF process, the effect of pH, 
reaction time, and hydrogen peroxide concentration on COD removal efficiency were probed. 
Results: The optimum pH, current density, and the reaction time for the EC process were 7.3, 4.2 mA 
cm-2 and 20.3 minutes, respectively. Under these conditions, the COD, phosphate, and turbidity removal 
percentages were 80.8%, 94.9% and 85.5%, respectively, and the specific energy consumption was 1.5 
kWh m-3. For the EF process, the optimum pH, reaction time, current and hydrogen peroxide dosage 
were 3, 10 minutes, 2 A and 500 mg L-1, respectively. The EF showed higher COD removal efficiency 
(85.6%) with a lower specific energy consumption (0.5 kWh m-3) and reaction time compared to the EC.
Conclusion: This study shows that both EC and EF can effectively treat car wash wastewater with high 
removal efficiency within a short reaction time.
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Introduction 
Water is the most abundant substance on the planet; 
however, most of it is sea water and very difficult to use 
in industrial activities. Therefore, it is crucial to take 
care of the finite water resources. But many industries, 
such as the car wash industry, consume huge amounts of 
water and release the wastewater into the environment 
(1). Car wash wastewater contains various contaminants 
such as organic matter, oil, grease, detergents, phosphates, 
and hydrofluoric acid, all of which are harmful for the 
environment (1,2). Earlier it was reported that the total 
suspended solids, biochemical oxygen demand (BOD), 
chemical oxygen demand (COD), and oil and grease 
concentration in the automobile service stations were in 
the range of 610–4950 mg L-1, 75–570 mg L-1, 270–1640 
mg L-1 and 14–420 mg L-1, respectively, which is higher 
compared to the municipal wastewater (3, 4). For example, 

for medium municipal wastewater, the concentration 
of grease and suspended solids is 100 and 200 mg L-1, 

respectively, figures that are significantly higher compared 
to the reported data for car wash wastewater.
Different treatment processes such as membrane 
separation (5-7), chemical oxidation (8), coagulation 
and activated sludge (2) have been reported for the 
treatment of car wash wastewater. However, there are 
some disadvantages associated with these techniques. 
For example, the membrane processes’ main drawback 
is membrane fouling, which can decrease the efficiency 
of the process (1). Coagulation generates large amounts 
of sludge and increases the total dissolved solids in the 
effluent (9).
Electrocoagulation (EC) is a simple, reliable and cost-
effective process that has the potential to be a distinct, 
cost-effective, and environment-friendly choice for 
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wastewater treatment (10). The EC has been used to treat 
different types of wastewater including saline wastewater 
(11), removal of humic acid (12) and arsenic (13).
Another approach to electrochemical treatment is indirect 
electrolysis, which generates chemical oxidizing agents 
(e.g., hydrogen peroxide) to react with pollutants (14). The 
electro-Fenton (EF) process, in which Fenton’s oxidation 
and EC happen simultaneously, shows excellent removal 
efficiency for treating various wastewater types (15-18). 
In this process, hydroxyl radical (°OH), a highly oxidizing 
agent with a high oxidative potential (E° = 2.80 V), reacts 
rapidly with organic compounds (19). This process is 
most effective under acidic conditions, in which organic 
compounds are removed in two stages of oxidation and 
coagulation (20).
According to Mollah et al, iron as anode electrode can pro-
duce iron hydroxide, Fe(OH)2 or Fe(OH)3 (21). Depend-
ing on the aqueous pH, ferric ions may form monomeric 
and polymeric hydroxyl complexes, namely, FeOH2+, 
Fe(OH)2

+, Fe(OH)-
4,

4+
2 2 8 2Fe (H O) (OH) , Fe(H2O)5(OH)2+ 

and +
2 4 2Fe(H O) (OH) . These suspended solid hydroxides/

polyhydroxides/polyhydroxymetallic compounds have a 
strong affinity with dispersed particles and the counter 
ions to cause coagulation or adsorption (22-24).
In the EF process, hydroxyl radicals are produced by the 
reaction between ferrous ions and hydrogen peroxide, 
which can degrade organic compounds (25).
One advantage of the EF process over the conventional 
Fenton process is the reduction of ferric ion to ferrous ion, 
which can reduce iron sludge production (25). Despite 
intensive scientific research on industrial wastewater 
treatment by EC and EF, there are few reported publications 
on the application of these two techniques for treating car 
wash wastewater. The aim of this study is to investigate 
the performance of the EC and EF processes using iron 
electrodes in a batch mode operation for treating car wash 
wastewater. Studying both the EC and EF processes can 
lead to a better understanding of the efficiency of these 
two treatment techniques. Moreover, in this study, the 
response surface methodology (RSM) has been used to 
optimize the reaction conditions for EC process.

Methods 
Car wash wastewater
 The wastewater was collected from the top of a settling 
tank at the Jamalzadeh Car Wash Company, located 
in Tehran. Characteristics of the collected wastewater 
samples for the EC and EF processes are presented in 
Table 1.

Experimental method
The electrochemical cell consisted of four iron electrodes 
that were connected to a power supply (Zhaoxin) using 
a monopolar arrangement. Magnetic stirring at 150 rpm 
was maintained for a homogenous solution. The batch 
reactor contained 3.6 L of the wastewater sample. The 
dimension of the iron plates was 130 × 90 × 1 mm, and the 
total surface area was 936 cm2. The pH of the solution was 

adjusted using NaOH or H2SO4. Following the experiment, 
the solution was collected from the middle of the reactor 
for further analyses without any post-treatment. COD 
and phosphate concentrations were measured using DR 
5000 (HACH). The pH, total dissolved solid (TDS), and 
turbidity were measured by the Metrohm 691 pH meter 
(HACH), SensION378 (HACH) and DR2000 (HACH), 
respectively. The analyses were carried out according 
to Standard Methods for Examination of Water and 
Wastewater (26).

Experimental design
The classical or conventional method of experimentation, 
in which one parameter is changed, while the other 
parameters are fixed, is time-consuming and does not 
show the effect of the interactions between the factors 
(27). On the other hand, the RSM is attractive for its 
ability to evaluate the relative interaction of parameters. 
The central composite design (CCD), an experimental 
design for RSM, was performed using MINITAB software 
(version 16). The removal percentage of COD, phosphate, 
and turbidity had been taken as the system response. The 
levels for the main variables Xi (X1 [initial pH], X2 [current 
density] and X3 [reaction time]) were coded as xi according 
to the following equation:

0i
i

x xx
X
−

=
∆

                                                                         (1)

where Xi is the dimensionless value of an independent 
variable, Xi  is the real value, X0  is the real value of the 
centered point, and ΔX is the step change. Variables, 
experimental ranges and levels are presented in Table 
2. Experimental data were fitted to a second-order 
polynomial model and regression coefficients were 
obtained. The generalized second-order polynomial 
model used in the response surface analysis was: 

2
0i i i ii i ij i jY b b x b x b x x= + + +∑ ∑ ∑                              (2)

Where b0, bi, bii, and bij are the regression coefficients 
for intercept, linear, quadratic and interaction terms, 

Table 1. Characteristics of collected car wash samples for EC and 
EF processes

Parameter Value
pH 7.2-7.6
Turbidity (NTU) 118-1400
Phosphate (mg L-1) 11.4-38.2
COD (mg L-1) 610-2619
TDS (mg L-1) 209-110
Conductivity ( µs cm-1) 419-2200

Table 2. Experimental range and the test levels

Variables Factors
Ranges and levels

-1.6 -1 0 1 +1.6
Initial pH x1 5.7 6.3 7.3 8.3 9.0
Current density (mA cm-2) x2 -0.7 1 3.7 6.4 8.1
Reaction time (min) x3 10.3 15 22.5 30 34.8



Environmental Health Engineering and Management Journal 2017, 4(1), 37–43 39

Mirshahghassemi et al

respectively. Yi is the percentage removal of COD (Y1), 
phosphate (Y2) and turbidity (Y3). The models’ adequacy 
were also evaluated through the analysis of variance 
(ANOVA).

Results
Development of regression model equation and validation 
of the model
Based on the CCD experimental design results, the 
RSM was applied to develop the polynomial regression 
equations and find out the relation between the output 
response (removal efficiency) and the input factors 
(experimental variables) (Eq. 2). The full quadratic 
regression model consists of linear, square, and interaction 
terms. The removal percentage of COD (Y1,%), phosphate 
(Y2, %), and turbidity (Y3, %) in terms of coded factors are 
given by the following equations 3, 4 and 5, respectively. 

1 1 2 3
2 2 2
1 2 3 1 2

1 3 2 3

82.673 0.086 24.803 7.913

1.117 16.194 6.122 5.575
1.12 0.200

Y x x x
x x x x x

x x x x

= + + + −

− − + −
+

                                                                                               (3)

2 1 2 3
2 2 2
1 2 3 1 2

1 3 2 3

93.614 0.992 14.166 13.683

1.084 10.387 9.671 6.838
9.613 2.263

Y x x x
x x x x x
x x x x

= − + + −

− − − +
−

                                                                                                 (4)

3 1 2 3
2 2 2
1 2 3 1 2

1 3 2 3

83.059 5.204 21.601 5.100

4.965 12.224 4.890 2.275
0.625 3.125

Y x x x
x x x x x
x x x x

= − + + −

− − − +
−

                                                                                                (5)

Table 3 presents the ANOVA results for responses. The 
significance of the second-order regression models was 
determined by Fisher’s variance ratio test (F-test), lack 
of fit, and coefficients of determination between the 
experimental and predicted values (R2). F-value, defined 
as the ratio of regression’s mean square due to the residual 
error, is greater than the tabulated value (2.352 at 95% 
significance), showing the desirability of the regression 
model (28). The P value is lower than 0.05 showing that 
the model is also statistically significant (29). The values 

of R2 are greater than 80%, suggesting the desirability 
of the models (30). The R-squared for COD removal 
implies that 96.3% of the variations can be explained by 
the independent variables, and other R-squareds have the 
same definitions.

Determination of importance of model terms. 
The Pareto analysis calculates the percentage of 
effectiveness of each factor (Pi) on the response (31):

2

2 100 ( 0)i

i

bPi i
b

 
= × =  
 ∑

                                               (6)

Based on the Pareto analysis results, the current density (bi, 
CD) has the highest percentage of effectiveness on COD 
removal (60.8%) and turbidity removal (63.2%) (Figure 
1). The pH has the lowest impact, which is in agreement 
with the results reported by Amani-Ghadim et al (28).

Effect of operating parameters on COD removal
Figure 2 presents the three-dimentional (3D) response 
surface and two-dimentional (2D) contur plot of COD 
removal, which are graphical representations of their 
corresponding regression equation (Eq. 1). The 3D 
response surface can be used to estimate the removal 
efficiency, and the 2D contur plot shows the relative 
effects of any two variables, while the third variable is 

Table 3. ANOVA for the RSM model of COD, phosphate and turbidity removals

Source Degrees of freedom Sum of squares Mean square F value P value
COD removala

Model (regression) 9 8216.75 912.97 25.97 0.0001
Residual 9 316.42 35.16
Lack of fit 4 245.63 61.41 4.34 0.07

Phosphate removalb

Model (regression) 9 7402.65 822.52 13.71 0.0002
Residual 9 540.07 60.01
Lack of fit 4 475.13 118.78 9.15 0.016

Turbidity removalc

Model (regression) 9 6505 722.78 11.19 0.001
Residual 9 581.3 64.59
Lack of fit 4 399.6 99.91 2.75 0.148

aR2 = 96.3%; bR2 = 93.2%; cR2 = 91.8%.

Figure 1. Percentage effect of each model term obtained by 
Pareto analysis.
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kept constant. To study the effect of pH on COD removal 
efficiency, the pH was varied between six and eight. The 
optimum pH for maximum COD removal is 7.3, which 
provides the maximum flocculation of Fe(OH)2 and 
Fe(OH)3 (32). Under optimum conditions, the COD 
removal percentage was 80.8%.

Effect of operating parameters on phosphate removal. 
Figures 3 and 4 show the response surfaces and contur 
plots of phosphate removal. The use of the optimum 
condition led to a maximum phosphate removal of 94.9%. 

Effect of operating parameters on turbidity removal
Figure 5 shows that a decrease in the current density 
reduces the turbidity removal efficiency. In this study, 
the turbidity removal percentage was 85.5% under the 
optimum condition. Figure 5 also illustrates the effect of 
initial pH on turbidity removal efficiency. 

Optimization of the EC process
Table 4 shows the tabulated values for the optimum 
reaction condition and the expected and observed COD, 
phosphate, and turbidity removal. In this study, the 
desired values of COD, phosphate, and turbidity removal, 
and energy consumption—85%, 95%, 85% and 1.5 kWh 
m-3, respectively—were defined as the desired target. The 
energy consumption under optimum conditions was 1.66 
kWh m-3. The pH of the car wash wastewater was near 
the neutral pH, indicating that pH adjustment was not 
necessary.

Figure 2. Surface plot and the contour plot for COD removal. (A) 
pH= 7.3 and (B) current density= 4.2 mA cm-1.

Figure 3. Surface plot and the contour plot for phosphate removal 
(pH = 7.3).

Figure 4. Surface plot and the contour plot for phosphate removal 
(reaction time = 20 min).

A

B

A

B

Car wash wastewater treatment by EF
Despite the excellent removal of COD by the EC process, 
the EF process was performed too. This process is 
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recognized to be most efficient under acidic conditions 
(33). In this study, the pH range of 2-5 was tested. The 
maximum COD removal was 90.4% at pH = 3 after 20 
minutes of the reaction (Figure 6A). 
The effect of hydrogen peroxide concentration on COD 
removal was studied using the optimum pH. An increase 
in the H2O2 concentration from 100 to 500 mg L-1, COD 
removal increased from 81.8% to 90.4% (Figure 6B). 
At a higher concentration of H2O2, COD, the removal 
efficiency decreased, which could be due to the hydroxyl 
radical scavenging effect of H2O2 and the recombination 
of hydroxyl radicals (34). The optimum conditions for 
pH, reaction time, current and hydrogen peroxide dosage 
were 3, 10 minutes, 2 A, and 500 mg L-1, respectively. 
Under these conditions, a COD removal efficiency of 
85.6% with a specific energy consumption of 0.5 kWh m-3 
was obtained. 

Discussion
Our results show that a lower current does not provide 
enough iron ion to completely destabilize the suspended 
oxide particles (35). Based on Faraday’s law, an increase 
in the current density and reaction time increases the 

amount of iron hydroxides, resulting in higher removal 
efficiency of COD and turbidity via co-precipitation and 
sweep coagulation (36,37). Similar to the COD removal 
mechanism, increasing the current density and reaction 
time can increase phosphate removal efficiency by 
adsorption into the iron hydroxide, as well as precipitation 
of metal phosphate. Generally, a higher current density is 
favourable for pollutant removal. Our study shows that 
a higher COD and turbidity removal efficiency can be 
achieved in neutral and weak alkaline solutions, which 
is in agreement with the results reported by Bayramoglu 
et al (38). Phosphate removal was higher under acidic 
conditions, which aligns with results reported by Irdemez 
et al (39). 
For the EF process, a pH greater than 3 decreased the 
COD removal efficiency. At a higher pH, the oxidation 
efficiency of EF process may decrease due to the formation 
of low active Fe(OH)3, which has a lower tendency to 

Figure 5. Surface plot and the contour plot for turbidity removal 
(reaction time = 20 min).

Figure 6. COD removal efficiency as a function (A) pH (current: 
2 A, H2O2 concentration: 500 mg L-1 and reaction time: 20 min) 
(B) H2O2 concentration (current: 2 A, pH: 3 and reaction time: 
20 min) and (C) reaction time (pH = 3, current= 2 A and H2O2 
concentration = 500 mg L-1)
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Table 4. Optimum reaction conditions for COD, phosphate and 
turbidity removal for EC process

Variables Optimum values
Initial pH 7.3
Current density (mA cm-2) 4.2
Reaction time (min) 20.3
COD removal (predicted) (%) 83.8
COD removal (obsereved) (%) 80.8
Phosphate removal (predicted) 91.4
Phosphate removal (obsereved) (%) 94.9
Turbidity removal (predicted) (%) 84.7
Turbidity removal (obsereved) (%) 85.5
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react with hydrogen peroxide (40). In the EF process, the 
hydroxyl radicals are produced by a reaction between 
ferrous ions and hydrogen peroxide, degrading the organic 
compounds (25). In addition, by increasing the reaction 
time, the hydroxyl radicals have a greater chance to react 
with contaminants, leading to higher COD removal 
(Figure 6C). Our results showed that the EF process can 
provide similar COD removal efficiency compared to the 
EC process with less energy consumption and reaction 
time. However, a trade-off exists between the complexity 
of the EF compared to the EC and the needed energy and 
time, which must be optimized on a case-by-case basis.

Conclusion
An electrochemical cell with four iron electrodes using 
a monopolar arrangement was used to treat car wash 
wastewater. The performance of iron electrodes was 
modelled and optimized using the RSM. The R-squared 
for COD, phosphate, and turbidity removal was 96.3%, 
93.2% and 91.8%, respectively, which satisfies the 
adjustment of the full quadratic regression model with the 
experimental data. For the EC process, the optimum pH, 
current density, and reaction time were 7.3, 4.2 mA cm-2 
and 20.3 minutes, respectively. Under these conditions, 
the removal percentage of COD, phosphate, and turbidity 
was 80.8%, 94.9% and 85.5%, respectively. For the EF 
process, pH =3 is the optimum pH for COD removal. This 
study shows that both the EC and EF can effectively treat 
car wash wastewater with a high removal efficiency within 
a short reaction time.
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