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Abstract
Background: Background: Increasing nitrate concentrations in groundwater resources is considered a 
common environmental and public health problem worldwide. In this research, an autotrophic up-flow 
bioreactor with pumice as media was used to study the effects of the sulfur-to-nitrogen (S/N) ratio and empty 
bed contact time (EBCT) on nitrate removal efficiency and byproducts.
Methods: Experiments were carried out in a 3.47 L up-flow, fixed-bed reactor with 3 sampling ports. To 
evaluate the overall impact of S/N ratio and EBCT on the performance of the bioreactor, several phases with 
different S/N ratios and EBCTs were applied. 
Results: At a constant S/N ratio of 3.85 g/g, as EBCT decreased from 24 hours to 2 hours, the nitrate removal 
efficiency decreased from 98% to 64%. On the other hand, at the desired EBCT of 4 hr, as S/N ratio decreased 
from 3.85 to 1.51 g/g, nitrate removal efficiency was reduced from 85% to 32%. Changing the EBCT and S/N 
ratio also affected the effluent nitrite and sulfate concentrations as byproducts. At the S/N ratio of 3.85 g/g 
and EBCT of 24 hours, effluent nitrite and sulfate concentrations were 0.1 mg NO2--N/L and 463 mg SO4

2-/L, 
respectively. Decreasing the S/N ratio to 1.51 g/g and the EBCT to 4 hours caused drastic changes in effluent 
nitrite and sulfate concentrations. 
Conclusion: The results indicated that the autotrophic denitrification with thiosulfate as electron donor and 
pumice as media was feasible and applicable for nitrate contaminated groundwater.
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Introduction
Inorganic nitrogen compounds, such as nitrite, nitrate, 
and ammonium, are abundant contaminants in ground 
and surface water. High NO3–N concentrations (>10 
mg/L) have been recorded in numerous aquifers in many 
countries (1). Nitrate that is used mainly in inorganic 
fertilizers leaks into the aquifer and surface waters (2, 3). 
It has been estimated that more than 70% of all nitrate 
existing in surface and groundwater comes from fertilizers 
and other materials used in agricultural activities. 
However, emissions from septic tanks and seep from 
sewers, atmospheric deposition, and the usage of sewage 
sludge as fertilizer can all be effective (4,5). In some 
cases, high nitrate concentrations are caused by natural 
sources (6). In rural and urban areas of Iran, the growth 
in agriculture and industry has led to groundwater nitrate 
concentrations over the acceptable thresholds (7). 

Causing eutrophication, nitrate has adverse effects on 
water ecosystems (8). According to Sun et al (2) and 
Migeot et al (9), health implications of nitrate in humans 
include but are not limited to methemoglobinemia, 
diminished vitality, low weight in newborns, higher 
chance of fetal death, and formation of carcinogens in the 
digestive system. In livestock, nitrate contamination can 
cause reduced weight gain rates. 
Among different physical, chemical, and biological 
nitrate removal processes, biological denitrification is 
an efficient microbial process that changes nitrate to N2 
under anoxic conditions (1,10,11). In this process, four 
enzymatic steps produce intermediates such as nitrite 
(NO2

-), nitric oxide (NO), and nitrous oxide (N2O) (12). 
Nitrate can be exploited as a terminal electron acceptor 
by a variety of heterotrophic and autotrophic bacteria. 
While the former uses organic matters, the latter relies 
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on inorganic compounds such as molecular hydrogen, 
sulfur, sulfide, thiosulfate, and Fe++ as electron donors 
(7,13). Heterotrophic denitrification has been widely 
applied to wastewater treatment due to its high efficiency 
and economical aspects (14), but for natural bodies of 
water, it needs the organic carbon as the electron donor to 
reduce nitrate and metabolism of heterotrophs. The most 
important problem of using this process is the existence 
of residual organic matter such as methanol, ethanol, or 
acetic acid that may create several problems in the treated 
water (15).
Compared with heterotrophic treatment, autotrophic 
treatment is an attractive alternative because of 2 notable 
advantages. First, since autotrophic denitrification does 
not need any external organic carbon such as methanol 
and ethanol, it is very cost effective with a lower risk of 
secondary contamination compared to heterotrophic 
denitrification. Second, autotrophic denitrification has 
a lower cell yield of autotrophic bacteria and, therefore, 
less sludge production, which minimizes the handling 
of sludge (16). In autotrophic denitrification, inorganic 
carbon compounds such as carbon dioxide (CO2) 
and  bicarbonate (HCO3

-) are used as  carbon sources  
(13,17,18). The produced  H+ consumes alkalinity to 
balance the charge; therefore, some alkaline sources 
such as limestone are needed to retain the pH in the best 
condition for autotrophic denitrifiers (19,20).
In sulfur-based autotrophic denitrification, sulfur-
oxidizing bacteria such as Thiobacillus denitrificans and 
Thiomicrospira denitrificans are agents for reducing 
nitrate to N2 (21-24). A variety of solid materials has been 
applied as biofilm carriers for attached growth autotrophic 
denitrification processes like granular-activated carbon 
(25,26), polystyrene bead (27), elemental sulfur (28,29), 
zeolite (30), ceramsite (10), and polyurethane foam (31).
The aims of this study were to determine the feasibility of 
using pumice as a biofilm cost-effective carrier, and the 
effects of S/N ratio, EBCT, and height of bioreactor on 
nitrate removal efficiency and obtained byproducts. 

Methods 
An up-flow bioreactor system, as shown in Figure 1, was 
used for the experiments. The column bioreactor was 
made of steel with an inner diameter of 8 cm, height of 
80 cm, and total volume of 3.78 L. Three sampling ports 
were placed at intervals of 23, 46, and 69 cm from the inlet 
valve. The pumice particles used as biofilm carriers had 
diameters ranging from 2.36 mm to 4.75 mm and a porosity 
of 60%. Due to the high porosity of pumice, this media has 
a high specific surface that increases the attached growth. 
In addition, pumice has some other advantages such as 
low cost and availability in all parts of Iran. The bioreactor 
was fed continuously in the up-flow mode using an 
adjustable peristaltic pump with the minimum flow rate 
of 0.5 L/min. Influent groundwater was taken from one of 
the Tehran’s Qanats (Iran). The chemical properties of the 

water of the Qanat are shown in Table 1. To achieve the 
desired influent nitrate concentration (150 mg/L), KNO3 
was added to the influent (32).
The inoculum was obtained from the returned anoxic 
activated sludge of the A2O process treating municipal 
wastewater in the Shahrak-e-Ekbatan wastewater 
treatment plant in Tehran (Iran). To pre-enrichment the 
autotrophic denitrifying biomass, a synthetic medium 
consisting of 3.0 g KNO3/L, 6.0 g Na2S2O3.5H2O/L, 1.5 g 
NaHCO3/L, 0.3 g KH2PO4/L, 0.4 g MgSO4.7H2O/L, and 1 
ml/L of trace element containing 5.74 g NH4Cl/L, 5.6 g 
K2HPO4/L, 1 g MgCl2/L, 1 g FeCl2.6H2O/L, 1 g MnSO4.
H2O/L, and 1 g CaCl2/L was added to the inoculum in a 
master culture reactor. After sufficient bacterial growth, 
the bioreactor was inoculated with one liter of the culture 
reactor. The rest of the bioreactor volume was filled with 
synthetic groundwater. After a few hours, the bioreactor 
was operated continuously at an empty bed contact 
time (EBCT) of 24 hours with synthetic groundwater as 
influent. The autotrophic denitrification process needs an 
electron donor to participate in the oxidation/reduction 
mechanism. Sodium thiosulfate was added to the influent 
as the electron donor. At first, the bioreactor was operated 

Table 1. Chemical properties of the water of the Qanat

Chemical parameter Concentration (mg/L)

Nitrate (No3
-) 11±1

Nitrite (No2
-) 1.80±0.15

Sulfate (So4
-2) 110±13

Alkalinity (as CaCO3) 228±24
pH 7.40±3

Figure 1. Experimental set-up.
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with the maximum electron donor concentration (500 
mg/L Na2S2O3.5H2O) and different EBCTs (2, 4, 8, 16, and 
24 hours). In this step, the desired EBCT was determined. 
Then, in this desired EBCT, the effects of electron donor 
concentration and column height on denitrification 
efficiency were studied. To determine the effect of the S/N 
ratio on the bioreactor performance, different S/N ratios 
(3.85, 3.05, 2.29, and 1.51 g/g) were tested. All experiments 
were conducted at 25±2°C. 

Analysis methods
All chemical analyses were performed according to the 
APHA’s Standard Methods for Examination of Water 
and Wastewater (33). Concentrations of nitrate, nitrite, 
and sulfate were determined using a HACH DR5000 
spectrophotometer (USA). Alkalinity was measured by 
the titration method, and pH values were monitored 
using a standard digital pH meter (691 Metrohm). In each 
analysis, at least one in 3 samples was duplicated, and the 
deviation between the two samples was always less than 
5%.

Results 
The effects of flow rates on the denitrification of synthetic 
groundwater was investigated by increasing the flow rate 
from 3.47 L/d to 41.62 L/d with a corresponding EBCT 
of 24 to 2 hours at the S/N ratio of 3.85 g/g. Figure 2 
shows the variations of nitrate removal efficiency and 
effluent nitrate concentration during the operation. The 
maximum nitrate removal efficiency of 98% was obtained 
with an EBCT of 24 hours. As EBCT was decreased from 
24 to 2 hours, the nitrate removal efficiency decreased 
from 98% to 64% and the effluent nitrate concentration 
increased from 3 to 54 mg/L. According to Figure 2, 
changes in nitrate removal efficiency in different EBCTs 
are not the same. In lower EBCTs, these changes were 
severe. However, an increase in the nitrate-nitrogen 
removal rate was observed during EBCT reduction; the 
nitrate-nitrogen removal rate increased from 33 mg/L/d 
NO3

--N in an EBCT of 24 hours to 260 mg/L/d NO3
--N 

in an EBCT of 2 hours. In an EBCT of 4 hours, since the 
effluent nitrate concentration of 23 mg/L was lesser than 

the regulatory maximum contaminant level of 50 mg/L 
for drinking water (according to Iranian standards), this 
EBCT was selected as the desired EBCT for subsequent 
experiments (34). 
The effects of EBCT on the effluent nitrite and produced 
sulfate concentrations are shown in Figure 3. Nitrite 
concentration in the effluent represented the incomplete 
denitrification.
The optimal range of pH for autotrophic denitrifiers is 
6.8-8.2 (35), and maximum denitrification activity is 
observed at pH 7.5-8.0 (36). During the experiments, pH 
was controlled by adding buffer.
Autotrophic denitrifiers consume alkalinity. According 
to the current results, the ratio of alkalinity (as CaCO3) 
consumed per NO3

--N removed (g/g) was 2.92, which 
was similar to the theoretical ratio (37), and the results 
found by Chung et al (38) indicated that autotrophic 
denitrification consumed 3-4 mg CaCO3/mg NO3

--N. 

Effects of S/N ratio on nitrate removal and byproducts
After determining the EBCT of 4 hours as the desired 
EBCT, the effect of S/N ratio on nitrate removal efficiency 
was investigated. S/N ratios of 3.85, 3.05, 2.29, and 1.51 
(g/g) were tested. The stoichiometric S/N ratio for complete 
denitrification is 3.84. Previous studies have shown that in 
S/N ratios between 3.70 and 6.67, no significant changes 
in denitrification rate were observed (3). 
In Figure 4 the effect of S/N ratio on nitrate removal 
efficiency is shown. At an EBCT of 4 hours, decreasing 
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Figure 3. Effects of EBCT on effluent nitrite, and produced sulfate.

Figure 4. Effect of S/N ratio on nitrate removal efficiency.
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the S/N ratio from 3.85 to 1.51 (g/g) reduced nitrate 
removal efficiency from 85% to 32% and increased nitrite 
accumulation.
Figure 5 illustrates the effect of S/N ratio on nitrate, nitrite, 
and sulfate concentrations. As the S/N ratio was reduced, a 
decrease in the amount of produced sulfate was observed. 
At the S/N ratio of 3.85, the nitrite concentration in the 
effluent was 3.95 mg NO2

-/L. By decreasing the S/N ratio, 
nitrite accumulation was increased so that at the S/N ratio 
of 1.51, about 25 mg/L nitrite was observed in the effluent.
Figures 6, 7 and 8 show the profile of effluent nitrate 
and nitrite concentrations and sulfate production versus 
reactor height (23, 46, and 69 cm), at different EBCTs and 
an S/N ratio of 3.85 g/g, respectively. High rates of nitrate 
removal and sulfate production at the lower sampling 
port (23 cm) were observed in all cases. Generally, the 46 
cm and 69 cm sampling ports were associated with lower 
removal and production rates. Increased cell growth at the 

lower sampling port was anticipated considering the high 
nitrate and thiosulfate concentration in the feed.
It was observed that at an EBCT of 4 hours, more than 
90% of nitrate removal efficiency occurred in the first 23 
cm of the column. The reduction of EBCT increased the 
effect of higher parts on the removal of nitrate removal, so 
that at an EBCT of 2 hours, 50% of total nitrate removal 
occurred in the mentioned part of the column (Figure 6).
As shown in Figure 7, a rapid accumulation of nitrite was 
observed in the first 23 cm of the column at EBCTs of 24, 
16, and 8 hours and an S/N ratio of 3.85 g/g. However, 
upon completion of denitrification at the height of 46 cm, 
an intensive nitrite decrease was observed.
Figure 8 shows the effect of column height on effluent 
sulfate concentration at different EBCTs. The sulfate 
production profile was very similar to that of nitrate; 
therefore, a fast increase in sulfate concentration was 
observed in the first 23 cm of the column. In upper ports, 
the increase in sulfate concentration occurred at a slower 
rate.

Discussion
Effects of EBCT on nitrate removal and byproducts
According to Zhou et al (16), low influent concentration 
and longer EBCTs improve nitrate removal efficiency. In 
addition, they reported that the nitrogen in groundwater 
and effluent from municipal WWT can obtain removal 
rates of up to 90% with a four-hour EBCT. However, longer 
EBCTs are required for water with a nitrate contamination 
over 70 mg/L. According to this study, reducing the EBCT 
from 24 hours to 2 hours led to the reduction of nitrate 
removal efficiency from 98% to 64% (with a constant S/N 
ratio of 3.85 g/g).
As shown in Figure 3, at EBCTs of 24, 16, and 8 hours, 
the effluent nitrite concentrations were less than the 
maximum allowable level of 3 mg/L. As EBCT decreased 
to 4 and 2 hours, a drastic nitrite accumulation occurred 
in the effluent due to incomplete denitrification. Although 
molecular analysis associates the same microorganisms to 
denitrifications of nitrate and nitrite into nitrogen (16), 
the nitrite accumulation in autotrophic denitrification is 
associated with different causes. High specific utilization 
rate of nitrate, the reduction in induction time of NO2

-

reducing enzymes caused by nitrate, the variety in 

Figure 5. Effects of S/N ratio on effluent nitrate, nitrite, and produced 
sulfate concentrations.
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Figure 7. Effects of height and EBCT on effluent nitrite concentration. Figure 8. Effects of height and EBCT on effluent sulfate concentration.
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saturation rates and affinities of electron acceptors, and 
the type of bacteria are all considered to be contributors to 
nitrate accumulation in this process (39). 
When thiosulfate is used as the electron donor, sulfate 
ion is produced as a byproduct (31). Figure 9 shows the 
relationship between the produced sulfate and removed 
nitrate during the steady state condition for the influent 
S/N ratio of 3.85 g/g at different EBCTs. It was found that 
for each mg NO3

- removed, 2.43 mg/L SO4
2- was produced, 

which corresponds closely with the stoichiometric ratios 
of 2.62 and 2.24 derived from Equations (1) and (2), 
respectively (37,40). The difference between these values 
is caused by several factors such as feed composition, 
microbial population, pure culture, temperature, pH, etc.

0.844S203
2-+ NO3

- + 0.434H2O + 0.347CO2+0.0865HCO3
-+ 

0.0865NH4
+ → 0.0865C2H5NO2+0.5N2+ 1.689SO4

2- + 0.697
H+                                                                                                                                                              (1)

NO3
−+0.844S2O3

2−+0.347CO2+0.0865HCO3
−+0.0865NH

4+→0.036C5H7O2N+0.48N2 +1.45SO4
2− +0.045H+              (2)

As shown in Figure 9, the produced sulfate had a linear 
relationship with removed nitrate, and the EBCT had no 
significant effect on the stoichiometric ratio.

Effect of S/N ratio on Nitrate removal and byproducts
As shown in Figure 4, decreasing the S/N ratio to 1.51 
caused a notable decrease in the nitrate removal efficiency. 
This reduction occurred because of the electron donor 
shortage. In this case, increasing EBCT did not cause any 
significant changes in the nitrate removal efficiency; so, 
it seems that the concentration of electron donor is the 
controller agent. Campos et al (39) showed that when S/N 
ratio was less than 2.44, an increase in nitrite concentration 
occurred during denitrification.
It can be observed from Figure 5 that, in the denitrification 
process, a rapid initial decrease in thiosulfate concentration 
resulting in sudden nitrite accumulation occurred (38). 
In this case (low S/N ratio), the electron donor shortage 
caused incomplete denitrification and led to the ultimate 
nitrite accumulation. The results of this study correspond 
with those of previous studies and show that at S/N 
ratios lower than 4.35 (g/g), the accumulation of nitrite is 
inevitable (39). In this condition, even in greater EBCTs, 
nitrite accumulation occurred. Also, 2.43 mg of SO4

2-
 was 

produced for each milligram of NO3
--N removed, and this 

ratio did not change with different S/N ratios.
Campos et al (39) also showed that sulfate concentrations 
greater than 500 mg/L induced inhibitory effects on 
the nitrate removal efficiency. According to their study, 
autotrophic denitrifying activity was inhibited to 85% 
of that in the control test at a concentration of 5000 mg 
SO4

2-S/L. Oh et alreported that sulfate inhibition began 
at concentrations above 2000 mg SO4

2-S/L using a mixed 
culture (41), while Claus and Kutzner found that this 

compound started to inhibit at 1600 mg SO4
2-S/L (36). 

However, in this study, according to the low concentrations 
of nitrite and sulfate, the inhibitory effects were negligible.

Effects of column height on nitrate removal and byproducts
Moon et al (42) showed that a larger portion of nitrate 
removal took place in the bottom part of the column. Their 
findings are very similar to the results of this study that 
show more than 90% of nitrate removal occurred in the 
first 23 cm of the column (Figure 6). They observed that 
almost all the nitrate removal occurred in the first 25 cm 
of the column, and the effect of S/N ratio was negligible.
Figure 7 shows the effluent nitrite concentrations at 
different EBCTs and heights. The results showed a 
great nitrite accumulation in the first 23 cm, similar 
to the findings of Moon et al (42) which showed nitrite 
accumulation at the height of 17 cm. Incomplete 
denitrification caused primary nitrite accumulation, but 
in upper heights, nitrite concentration decreased because 
of complete denitrification. In shorter EBCTs, such as 2 
hours and 4 hours, nitrite accumulation continued, so that 
a great nitrite concentration in the effluent was observed. 
The behavior of the sulfate concentration was very similar 
to revers trend nitrate removal (Figure 8). The results 
showed a notable accumulation of sulfate concentration 
in the first 23 cm due to the high rate of nitrate removal in 
this section of the bioreactor. 

Conclusion 
Continuous bioreactor tests showed that pumice granules 
can be used as neutral media in autotrophic bio-filters 
and have a significant performance in reducing the nitrate 
concentration of groundwater. However, parameters such 
as EBCT, S/N ratio, and column height play important 
roles in nitrate removal efficiency. While using autotrophic 
microorganisms for denitrification, byproducts such as 
nitrite and sulfate (if sulfur-oxidizing bacteria are used) 
should always be monitored. In fact, parameters that 
control the efficiency of nitrate removal can also control 
the byproducts.

Figure 9. Relationship between removed nitrate and produced sulfate.
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