
Activity of acetylcholinesterase (AChE) in male albino rats 
exposed to metal welding fumes in an experimental setting
Ali Sani1,2* ID , Ibrahim Lawal Abdullahi1 ID , Sani Ibrahim1 ID

1Department of Biological Sciences, Bayero University Kano, P.M.B. 3011, Kano, Nigeria
2Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong 
University, 200240, Shanghai, China

Abstract
Background: There are millions of workers in the world, who engage in activities associated with welding 
operations but are not classified as full-time metal workers. The present study aimed to determine the 
activity of acetylcholinesterase (AChE) in blood of laboratory animals exposed to welding fumes. 
Methods: Welding fumes were obtained from Kofar Ruwa, Kano by a skilled welder. 130 albino rats 
were purchased from the Animal Section of Department of Biological Sciences and were divided into 
12 groups. They were given doses equivalent to the workers’ real life exposure regimes, and 1 group was 
selected as control group. They were administered intratracheally following anesthetization once weekly 
for twelve weeks. The rats were euthanized and serum samples were collected. Then, AChE activity was 
evaluated spectrophotometrically using ELISA kit (Sunlong Biotech Company). 
Results: The mean values of AChE ranged from 23.1 to 25.05 ng/mL with the control having a value of 
24.7 ng/mL. Thus, there was a decrease in the values of AChE in the blood of treated groups, which was 
significantly different from the control (P < 0.05). 
Conclusion: Metal welding fumes negatively affected the AChE by reducing its mean values. This 
implies that welding fumes possesses neurotoxic effects, which can lead to some neurodegenerative 
diseases.
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Introduction
All around the world, there are many workers who are 
not regarded as full-time welders though they engage in 
activities related to welding. Around 800 000 workers are 
regarded as full-time welders globally, and approximately 
410 040 workers are regarded as welders, cutters, solderers, 
and brazers in the United States alone (1). The process 
of welding involves the vaporization of the metals and 
oxides of an electrode or wire that is consumed during the 
process to release fumes/dusts. Particulates are generated 
from excessive condensation of the vapours which are 
comprised of different metal oxides that are related to the 
electrode composition (2). The process by which high-
temperature metal vapours are transformed into primary 
particles is called nucleation (3). Metal works are found 
all over the states landscape and regarded among the 
major economic activities in the area. Many individuals 
are involved in the occupation without knowing the 
hazards and risks associated with it. In addition, there is 
less or no regulation and control to checkmate the proper 

conduction of the activities in order to safeguard the 
health of the people and environment at large. So far, the 
toxicity and associated implications that result from metal 
fumes and particles exposure are largely unattended. 
There is also no information about the severity length of 
the problem in the urban population of Kano, Nigeria, 
while it can broaden the scope of environmental health 
issues in urban population of Kano, Nigeria. Therefore, 
the present study aimed to determine the activity of 
acetylcholinesterase (AChE) in blood of laboratory 
animals exposed to welding fumes.

Materials and Methods
Collection of welding fumes
Open front cubicle that resembles a chamber was used to 
collect the produced fumes. The volume of the chamber is 
1 m3. A skilful metal worker performed the manual metal 
welding (shielded manual metal arc welding) process 
using a stainless steel hard surfacing electrode (Hyundai 
Welding electrode low hydrogen E 7018 3.2 mm) and the 
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fumes were dusted on a 0.2-μm nuclepore filters. A large 
amount of fumes were collected just before the start of the 
study. Furthermore, the obtained fumes were suspended 
subsequently in distilled water and sonicated for 1 minutes 
(4).

Experimental design
In this study, 130 male Albino rats (Rattus norvegicus) 
with a weight between 210 to 250 g were collected from 
the Animal Section, Department of Biological Sciences, 
Bayero University, Kano, and divided into 13 experimental 
groups (n=10 per group) (5). The animals were kept at an 
animal house in Aminu Kano Teaching Hospital located 
in Kano, Nigeria. The experimental design used for this 
study was randomized block design. The animals were 
acclimatized for 14 days prior to treatment.
Housing and feeding conditions for experimental animals

The animal house had restricted access and was free 
of pathogens and other extraneous factors. The animals 
were put in cages and a mark was made on their tails for 
identification. 

The room temperature and relative humidity were about 
22°C (± 3°C) and 30%, respectively. Also, the light-dark 
cycle of 12 hours was used in this study. The rats were fed 
with a conventional laboratory diet and water ad libitum. 
Ethical clearance for the study was obtained from College 
of Health Sciences Research Ethics Committee (CHS-
REC), Bayero University, Kano, Nigeria (6).

Preparation of the test substance
The dose administered in this study followed a real-time 
workers exposure schedule, which was adopted from 
the study of Sani and Abdullahi (5). It was presented as 
follows: 

A simulation was used to evaluate the lung burden of 
metal workers with various working regimes (hours/day) 
(7,8). The factors that were considered for the simulation 
include:

Fume concentration (5 mg m−3, threshold limit value for 
welding fumes), human minute ventilation volume (20 000 
mL min−1× 10−6m3mL−1), daily duration of exposure (no. 
of h/day × 60 min h−1), and efficiency of deposition (15%) 
(9,10). 

With regard to the above-mentioned elements, the daily 
burden of metal workers for several hours per day was 
obtained by the following calculations:
1.	 Metal worker daily burden (2 h/day) = fume 
concentration (5 mg/m3) × human minute ventilation 
volume (20000 mL/min × 10-6 m3/mL) × exposure 
duration (2 h/day × 60 min/hr) × deposition efficiency 
(15%) = 1.8 mg
The surface area of alveolar epithelium (rat = 0.4 m2; human 
= 102 m2) was used as dose metric (11). Rat daily burden 
of exposure was obtained to be 0.0070 mg. Then, similar 
exposure in rats for 3, 5, 10, and 20 years were obtained 
to be 7.66, 12.77, 25.55, and 51.10 mg, respectively, 

considering 365 days as a year. The concentrations were 
administered over 12 weeks.
2.	 Metal worker daily burden (4 h/day) = fume 
concentration (5 mg/m3) × human minute ventilation 
volume (20000 mL/min × 10-6 m3/mL) × exposure 
duration (4 h/day × 60 min/h) × deposition efficiency 
(15%) = 3.6 mg
The surface area of alveolar epithelium (rat = 0.4 m2; 
human = 102 m2) was used as a dose metric (11). The 
daily burden for rat exposure was obtained to be 0.0141 
mg. Then, such exposure regimes in rats for3, 5, 10, and 20 
years were obtained to be 15.44, 25.73, 51.46, and 102.93 
mg, respectively, considering 365 days as a year. The 
concentrations were administered over 12 weeks.
3.	 Metal worker daily burden (8 h/day) = fume 
concentration (5 mg/m3) × human minute ventilation 
volume (20000 mL/min × 10-6 m3/mL) × exposure 
duration (8 h/day × 60 min/h) × deposition efficiency 
(15%) = 7.2 mg

The surface area of alveolar epithelium (rat = 0.4 m2; 
human = 102 m2) was used as dose metric (11). The daily 
burden for rat exposure was obtained to be 0.0282 mg. 
Then, such exposure regimes in the rats for 3, 5, 10, and 
20 years were obtained to be 30.88, 51.46, 102.93, and 
205.86 mg, respectively, considering 365 days as a year. 
The concentrations were administered over 12 weeks.

Table 1 shows the working concentrations of metal 
welding fumes administered to the albino rats over a 
period of 12 weeks. Each concentration was administered 
per animal per week (5).

The samples of the metal fumes were prepared in sterile 
saline, and then, were sonicated for 1 minutes to have equal 
distribution of the fumes throughout the solution. The 
samples were prepared weekly prior to administration. 
Rats were anaesthetized with ketamine (0.1 mL/100g b.w 
I.P), and following the loss of consciousness, the animals 
were intratracheally instilled with the respective dose 
per animal once a week for 12 weeks. Control groups 
received 200 μL sterile saline via intratracheal route after 
anaesthesia (12).

Collection of blood samples 
The experimental animals were euthanized a week after 
the last 12th week of administration. Blood samples were 
collected from the jugular vein into a plain bottle and 
taken to the laboratory. However, the blood samples were 
centrifuged to obtain the serum for the analysis (12,13).

Table 1. Working values for test substances administered to the animal 
groups used in the present study

Groups

Group IA: 0.64 mg Group IIA: 1.29 mg Group IIIA: 2.57 mg

Group IB: 1.06 mg Group IIB: 2.14 mg Group IIIB: 4.27 mg

Group IC: 2.13 mg Group IIC: 4.29 mg Group IIIC: 8.56 mg

Group ID: 4.26 mg Group IID: 8.58 mg Group IIID: 17.16 mg
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Determination of acetylcholinesterase activity
The activity of AChE was determined 
spectrophotometrically using ELISA kit (Sunlong Biotech 
Company).

Statistical analysis
Relevant statistical tools were employed to analyze data 
or results obtained from the study. Means of various 
parameters were analyzed statistically to check for 
statistical differences by ANOVA using SigmaStat version 
3.5. Confidence interval was taken at 95% and statistical 
significant level was considered at P < 0.05.

Results
The mean values ranged from 23.1 to 25.05 ng/mL with 
the control having a value of 24.7 ng/mL. The values of 
AChE decreased across the groups IA, IB, IC, and ID, 
which was statistically significant (P < 0.05) (Table 2). 
Similarly, the values of AChE decreased across the groups 
IIA, IIB, IIC, and IID, which was statistically significant 
(P < 0.05) (Table 2). All the values are less than the control 
value of 24.7 ng/mL. In addition, the values of AChE 
decreased across the groups IIIA, IIIB, IIIC, and IIID, 
which was statistically significant (P < 0.05). All the values 
are less than the control value of 24.7 ng/mL as presented 
in Table 2.

Discussion
AChE is an important enzyme in the central nervous 
system that helps promote the transmission and catalysis 
of acetylcholine, which is a neurotransmitter in cholinergic 
synapses. It is related to the regulation of outgrowth and 
survival of neurons and intracellular calcium levels (14). 
Therefore, AChE inhibitors are crucial in the management 
of neurodegenerative disorders such as Alzheimer’s 
disease (15). The activity of AChE is mostly evaluated in 
the prediction of neurotoxicity induction as is the case 
with high manganese (Mn) exposure. Acetylcholine is 
transported to the nerve ends via axonal transport and 
released into the synaptic space (16).

The suppression of AChE leads to the accumulation 
of AChE in the synapses of nerve muscles and creates 
abnormal results, most importantly, higher activity of 
muscle tissues (17).

One of the metals present in the welding fumes is Mn. It 
acts as an antioxidative enzyme cofactor of Mn superoxide 
dismutase or AChE that functions in the production and 
transfer of neurotransmitters (18,19).

In addition, many studies have reported a modification 
in AChE activity resulting from Mn substitution and 
increased accumulation of AChE in the brain. Thus, it 
causes a reduction in the control of muscle and nerve. 
In addition, neurotoxin effects which seems to be under 
the effect of pollutants are related to changes in normal 
behaviours (20). The accumulation of metals taken that 
enter the body through different routes at various levels 
in organs and tissues was reported. Those metals that 
possess some physiologic functions are stored and could 
be thrown out after joining in some metabolic ways in the 
living body. Toxic stored metals could damage enzyme 
structure (21).

Lead (Pb) and zinc (Zn) were revealed to inhibit AChE 
activity in the brain tissue of zebrafish (Danio rerio) (22). 
As reported in the present study, the levels of AChE 
decreased by exposure to metal fumes. The inhibition 
under the effect of Pb could be caused by binding the 
metal to the functional groups of proteins like imidazole, 
sulfhydryl, and carboxyl (23). There was emergence of 
catalytic activity loss in functional groups (24). It showed 
a significant inhibition of AChE in the brain and muscle 
tissues following sublethal administration of cadmium 
(Cd) to zebrafish (25). The same result was obtained on 
Mugil cephalus and zebrafish after exposure to Cd, Iron 
(Fe), copper (Cu), Pb, and Zn (26), which is consistent 
with the results of the present study. Mercury (Hg), Cd, 
Pb, and arsenic (As) are among the toxic heavy metals 
whose accumulation could lead to disorders of central 
nervous system, low energy generation, and damage to 
the composition of most important organs (27). Excessive 
exposure to pollutants could lead to slow and progressive 
physical and mental problems such as neurodegenerative 
process of Alzheimer’s disease and Parkinson’s disease 
(28).

Such heavy metals and organophosphates are renowned 
inhibitors of AChE which can alter its efficiency (22,29). 
This has been supported by the findings of the present 
study where exposure to the welding metal fumes inhibits 
AChE by reducing its levels as seen in Table 2. 

There is an interaction between heavy metals including 
Hg/Pb and the causes of neurodegenerative diseases. Such 
metals could accumulate in the brain which by crossing 
blood-brain barrier can induce oxidative stress and may 
lead to neurodegenerative diseases such as Alzheimer’s 
disease and Parkinson’s disease (27). Hence, cholinergic 
system is responsible for manifestations of behaviour 
in animals (30). It has been reported that Pb has caused 
impairments of AChE system, and subsequently, cognitive 
problems in animals exposed to Pb. The inhibition of 
AChE is one of the early biomarkers of exposure to 
environmental toxins in humans and is associated with 

Table 2. Mean values of AChE (ng/mL) in blood of experimental rats 
exposed to metal fumes

Test animal groups I II III

A 25.05 24.03 23.63

B 24.58 23.91 23.40

C 24.45 23.57 23.10

D 23.63 23.075 21.90

Control 24.25 24.25 24.25

P value <0.05 <0.05 <0.05
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adverse health effects on the nervous system after exposure 
to metals and insecticides such as organophosphate (31). 
The basic concept of monitoring and applying inhibition 
of AChE and its subsequent monitoring is applied and 
used as a biological marker for assessing and real-time 
detection of exposure to hazardous compounds in the 
occupational setting and environmental medicine (32). 
Exposure to Pb obviously reduces the red blood cells 
(RBCs) and activity of AChE in plasma and has a negative 
association with blood Pb concentration. The reduction in 
RBC and plasma AChE, as reported by the present study, 
shows damages to the cholinergic activity, which leads 
to neurotoxicity in the Pb-exposed workers (33). Many 
studies have reported that AChE activity is decreased 
following the exposure to free radicals and inhibitory 
effect of Pb on AChE (33,34). The mechanism is that Pb 
shows stronger affinity for free-SH groups in enzymes 
and proteins whose binding could affect their function, 
resulting in cholinergic receptors desensitization and 
effectiveness in the action of transmission (35). According 
to a study by Reddy et al, the change in the activity of Ach 
and AChE can progress after withdrawal of Pb exposure 
(36). Probably as a result of inhibition of AChE activity by 
Pb in synaptosomal cortex, hippocampus, and cerebellum 
regions of the brain. However, their susceptibility to Pb 
exposure depends on the maturation and formation 
of differences (37). Exposure to Pb at physiologically 
relevant concentrations causes relative inhibition of AChE 
activity in the midbrain, and subsequently, defects of 
neurobehaviour and disruption of AChE at specific region 
and acetylcholine receptors (38).

Hg, Cd, and Pb have been observed to disrupt the activity 
of AChE in the central nervous system of the red swamp 
cray fish after exposure to sub-lethal concentrations of the 
metals affected (39). Therefore, it can be suggested that 
oxidative damage in the zebrafish brain has resulted in a 
significant reduction in AChE activity but has not affected 
the pattern of gene expression. High concentrations of Hg 
can directly inhibit AChE activity in vitro experiments 
whereas lower doses of this metal cannot alter the enzyme 
activity (22). After a short-term exposure to Cd, AChE 
activity in the brain of adult rats has been inhibited with 
additional induced oxidative stress (39).

Metals, carbamates, and organophosphates have 
revealed inhibition of AChE. However, some studies 
have recently suggested that some metals can activate 
AChE during acute exposure (40). Hypothetically, it has 
been demonstrated that metals could interact with AChE 
receptors during acute exposure by influencing their 
binding capacity, which ultimately, leads to increased 
AChE (40). Similarly, initial increase after exposure was 
observed in groups exposed to lower doses of metal 
welding fumes in the present study. It has been reported 
that metals, carbamates, and organophosphates inhibit 
AChE (41,42).

Though there are reports that described inhibition 

of AChE by metals under acute exposure, some suggest 
otherwise. Zatta et al have revealed an elevation of AChE 
in rats administered Al orally (43). Some studies have 
explained the effect of stimulation by Pb in rats and 
oligochaetes (42,44). Also, Gallegos et al have described 
that Hg (0.4 mg/L) leads to a significant increase in the 
activity of esterase in Callianas sathyrrena (45). The 
increased activity of AChE might also be associated 
with an up-regulation of AChE gene, due to an initial 
inhibitory effect of metals (40). Gallegos et al have 
reported an increase in the activity of AChE in rat’s brain 
that were exposed to 10 mg/kg Pb, after 30 minutes, 
though there was a sharp reduction in this activity after 24 
and 72 exposure hours (45). Hence, the initial increase in 
the activity of AChE after exposure to metals might be a 
feedback to acute toxicity. However, a reduction would be 
expected after excessive exposure periods. Perhaps after 
chronic exposure, metals would be able to inhibit AChE, 
as proposed and observed in the present study.

Conclusion
According to the results, the metal welding fumes 
negatively affected the AChE by reducing its values in 
blood of treated groups, which was significantly different 
from the control group (P < 0.05). This implies that 
welding fumes have neurotoxic effects which can lead to 
some neurodegenerative diseases.
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