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Abstract
Background: Nanocomposites have received remarkable attention as effective adsorbents for removal of 
coexisting pollutants over the last decades. The presence of heavy metals (HMs) in wastewater has caused 
a global health concern. Therefore, the aim of this study was to review the most relevant publications 
reporting the use of nanostructures to simultaneous adsorption of HMs in mixed aqueous systems. 
Methods: In this systematic review, 9 studies were included through a systematic search in the three 
databases (ISI, Scopus, and PubMed) during 1990-2021. The optimal value of simultaneous adsorption 
parameters such as initial concentration, contact time, adsorbent dosage, and pH was discussed. 
Results: Findings indicate that the Langmuir and Freundlich models and the pseudo-second-order 
kinetic model have been widely used and the most popular models to describe the equilibrium of HMs 
by nanoadsorbents. This study confirmed that the simultaneous removal rate of HMs decreased with an 
increase in pH value. It was found that the major mechanisms of HMs adsorption onto nanostructures 
were electrostatic interactions and precipitation. 
Conclusion: Nanocomposites have remarkable adsorption performance for HMs with the highest 
adsorption capacity (qe(mg/g)). 
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Introduction
Heavy metals (HMs) are the chemical elements with a 
high density more than 5 gr/cm3 and atomic weights 
between 63.5 to 200.6 g/mol (1-3). This group of chemical 
compounds are used in mining, ceramics, automobile 
industries, electronics, battery manufacturing industries, 
agricultural production, and to improve home care (4-
6). HMs are widely distributed in the ecosystems due 
to human activities. The chemical structures and other 
characteristics for some of HMs are listed in Table 1. 
As HMs have long half-life and are non-biodegradable 
in the environment, they have been considered as toxic 
substances for the public health and environment even at 
ppb levels (4, 6, 7). These toxic metals affect cardiovascular 
systems, immune, digestive system, and the normal 
functioning of neurological via accumulation in the soft 
tissues and living organisms (8, 9). In fact, some of them 

like Cu and Zn are proposed as carcinogens by the United 
States Environmental Protection Agency (USEPA) (7, 10). 
Therefore, in recent years, the remediation of very low 
concentrations of HMs from aqueous solutions media has 
become a very hot topic (9, 10).

The results of bibliographic searches show that the 
adsorption process is a cost-effective technology with 
high efficiency, enabling large-scale application to remove 
HMs from drinking water, groundwater, and wastewater 
(11-14). During the last decade, nanocomposites have 
been the most widely used fundamental and suitable 
adsorbents due to its large surface area, excellent surface 
activities, its robust efficiency and rapid reactivity 
(13,15-18).

Generally, nanoparticles are particles with a size 
ranging from smaller than 100 nm (18). Therefore, in 
many researches, it is attempted that the modification 
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of various adsorbents (such as activated carbon, zeolite, 
montmorillonite, etc) with nanostructures to show a very 
high efficiency of simultaneous adsorption of HMs from 
wastewater due to the creation of very high affinity to 
simultaneous adsorption of water pollutants.

Therefore, the aim of this study was to collect 
information on the associations with the use of different 
nanocomposites for simultaneous adsorption of HMs 
from aqueous solutions by kinetics and isotherms analyses. 
The optimization value of simultaneous adsorption 
parameters such as initial concentration, contact time, 
adsorbent dosage, and pH was discussed. Furthermore, 
the adsorption mechanism was investigated. To the best of 
our knowledge, this research is the first systematic review 
(SR) that evaluated simultaneous adsorption of multiple 
HMs by nanocomposites. 

Materials and Methods
This SR was conducted on May 9, 2021 and based on the 
Preferred Reporting Items for Systematic reviews and 
Meta-Analyses (PRISMA) statement, to review studies on 
simultaneous adsorption of HMs by nanocomposites in 
aqueous solutions (19-21). The peer-reviewed literature 
was systematically searched in all available electronic 
information databases including Institute for Scientific 
Information (ISI), Scopus, and PubMed during 1990-
2021. The keywords were used based on the Medical 
Subject Headings (MeSH) as follows: [(removal) 
OR (adsorption) OR (sorption) OR (treatment) OR 
(simultaneous adsorption) OR (simultaneous removal) 
AND (aqueous) OR (wastewater) OR (water) AND 
(nanoparticle) OR (nanocomposite) OR (nanostructure) 
OR (nanoadsorbent) OR (nanomaterial) AND (heavy 
metal) OR (lead) OR (Pb) OR (cadmium) OR (Cd) OR 
(arsenic) OR (As) OR (mercury) OR (Hg) OR (zinc) OR 
(Zn) OR (copper) OR (Cu) OR (chromium) OR (Cr) OR 
(nickel) OR (Ni)]. 

Firstly, duplicate papers were excluded using Mendeley 
software. Then, some papers were included and excluded 
based on the title/abstract assessment. In this study, 
inclusion (a) and exclusion (b) criteria as follows:

(a) Articles published in English in peer-reviewed 

journals with a focus on simultaneous adsorption of HMs 
through different types of nanocomposites in aqueous 
solutions.

(b) Articles published as reviews, presentations, letters, 
books, conference papers, theses, guidelines, and short 
communications. Finally, the full texts of the remaining 
studies were downloaded and checked by two reviewers 
(ZN and SM). The flowchart of the paper search is 
illustrated in Figure 1. The information extracted from 
each original paper include study ID, type of HM, type 
of nanocomposite, operational parameters such as initial 
concentration, contact time, adsorbent dosage and pH, 
adsorption kinetic, adsorption isotherm, maximum 
adsorbent capacity, and possible adsorption mechanism 
(Table 2).

Results
Firstly, 210 records were identified through a systematic 
search in the mentioned three databases, as shown in 
Figure 1. Out of them, 190 records were excluded because 
review articles, duplicates and adsorbents were not 
related to nanocomposites. After reading full-texts of 20 
records, 11 records were excluded because simultaneous 
adsorption is not related to HMs together. Then, 9 records 
were included based on the inclusion and exclusion 
criteria and investigated for this review (4-10,22,23). The 
summarized information of the included records are listed 
in Table 2. Among 9 screened records, 5 records were on 
As; 6 records on Cd; 5 records on Pb, 3 records on Cu, one 
record on Zn, one record on Hg, one record on Cr, one 
record on Ni, and finally, one record on F (Table 2). 

Discussion
Type of adsorbents and their efficiencies
Nine types of nanocomposite as adsorbents have been used 
by different studies from 2013 to 2020 for simultaneous 
adsorption of HMs in aqueous solutions (Figure 1). The 
nanocomposites including hydroxy ferric phosphate and 
hydroxy ferric sulfate coating on Aspergillus, biochar-
supported zero-valent iron, polymer-based hydrated 
iron oxide, Fe-Ti oxides, graphene oxide modified with 
2,20-dipyridylamine, zeolite-supported zero-valent iron, 

Table 1. Characteristics of the heavy metals discussed in the study

Name Abbreviation CAS Number Molecular Weight (g/mol) Density (g.cm-3) at 20°C Atomic Number

Zinc Zn 7440-66-6 65.4 7.1 30

Chromium Cr 7440-47-3 51.996 7.19 24

Arsenic As As+3  =  22569-72-8
As+5 =  17428-41-0 74.9216 5.7 33

Cadmium Cd 7440-43 112.4 8.7 48

Nickel Ni 7440-02 58.71 8.9 28

Copper Cu 7440-50-8 63.546 8.9 29

Mercury Hg 7439-97-6 200.59 13.6 80

Fluorine F 7782-41-4 18.998403 1.8*10-3 9
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Figure 1. Summary of a standard four-step protocol for literature review.

Table 2. Summary of the included studies based on the simultaneous adsorption of heavy metals on nanocomposite

Possible Adsorption 
Mechanism

Isotherm 
Type

Kinetic 
Type Removal (%)

Adsorption 
Capacity

(mg/g)

Operational 
Parameters Nanocomposite Heavy 

Metal Ref.

Transformation of 
hydroxyl groups, 
precipitation 

Freundlich Pseudo-
second

As = 77
Cd = 74
Pb = 94

As = 162.00
Cd = 205.83
Pb = 730.79

Cons = 100 mg/L
pH  =  4.0

Time = 48 h
Sorbent = 

0.01 g (n-HFP)
0.09 g (n-HFS)

Hydroxy ferric 
phosphate (HFP) & 

hydroxy ferric
sulfate (n-HFS) 

coating on 
Aspergillus

As, Cd, Pb (22)

Electrostatic interaction,
formation of ternary 
surface complexes, and 
precipitation

Redlich–
Peterson

Pseudo-
second

98 for two 
metals

Cd = 179.9 
As = 158.5

pH  =  4.0
Time = 1 h

Cons = 60 mg/L

Biochar-supported 
zero-valent iron Cd, As (5)

Electrostatic interactions
and the coordination of 
the hydrated iron oxide 
nanoparticles

Freundlich Pseudo-
second

94 for two 
metals

As = 71.56
p-ASA = 
41.63

Cons =  50 mg/L
Sorbent  =  100mg

Polymer-based 
hydrated iron oxide

Organic/
inorganic 

As
(23)

Presence of multiple 
oxides in the synthesized 
material

Freundlich -

As = 98
Cu = 94
F = 43

Cd = 100
Pb = 98

As = 2.8
Cd = 1.86
Pb = 2.98

F = 7.2
Cu = 118

Cons = 0.15-4 mg/L
Time = 10-30 min

pH  = 7
Sorbent  = 0.005 g/L

Fe-Ti oxides As, Cd, Cu, 
Pb, F (8)

Electrostatic interactions 
with oxygen-containing 
groups and the strong 
surface complexation 

Langmuir Pseudo-
second

87 for four 
metals

Pb = 369.749, 
Cd = 257.201,
Ni = 180.893 

Cu =  358.824

Sorbent  = 8 mg
Cons =  20 mg/L 

pH  = 5
Time =  4 min

Graphene oxide
modified with 

2,20-dipyridylamine

Pb,
Cd, Ni, Cu (6)

Electrostatic adsorption, 
ionic exchange, 
oxidation, reduction, co-
Precipitation

Langmuir Pseudo-
second -

As =  11.52 
Cd =  48.63 
Pb =  85.37

pH = 6
Time =  10 h

Zeolite-supported 
zero-valent iron Cd, Pb, As (4)

chemisorption between 
Cd and Fe surface - - Cr = 100 

Cd = 100
Cr =  60
Cd =  60

Cons =  70 mg/L 
pH  =  6

Fe dose: 0.15 g/L
Silica-Coated Fe0 Cr, Cd (7)

Electrostatic interaction Langmuir Pseudo-
second

Hg = 98
Pb = 92

Hg =  200
Pb =  142.85

pH  =  6-7
Sorbent  = 0.4 g

Time = 1 h
Cons =  0.1 mg/L

Ceria
entrapped in 

tamarind powder
Hg, Pb (9)

Electrostatic interaction - Pseudo-
second

Cu = 93
Zn = 58 - Cons =  100 mg/L

Zero-valent iron 
impregnated

with clays
Zn, Cu (10)
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silica-coated Fe0, ceria entrapped in tamarind powder, 
and zero-valent iron impregnated with clays (4-10, 22, 
23). The maximum adsorption capacities (qe (mg/g)) of 
nanocomposites for multiple HMs were investigated and 
it was found that all of the adsorbent have good adsorption 
capacity for simultaneous adsorption of As, Cd, Pb, F, Ni, 
Cu, Cr, Hg, and Zn. Among included absorbents in SR, 
hydroxy ferric sulfate has the highest adsorption capacity 
for Pb (730.79 mg/g), while the minimum adsorption 
capacity was related to zeolite-supported zero-valent iron 
for As (11.52 mg/g). Many researches have shown that the 
simultaneous adsorption capacities of nanocomposites 
were greatly improved compared to adsorbents without 
nanostructures for multiple HMs. Modification of 
different adsorbents with nanomaterial increases the 
surface area of material and improves the affinity of 
adsorbents to simultaneous adsorption of multiple HMs 
(22). Generally, nanocomposites exhibited remarkable 
adsorption performance for HMs. 

Influence of key factors (pH, initial concentration, 
adsorbent dosage and contact time) on adsorption
Optimization of many factors such as contact time, 
adsorbent dose, pH, and initial dye concentration can 
affect the development of industrial-scale adsorption 
process (12,24). The solution pH is an important factor in 
adsorption process of pollutants. The results of the included 
records show that solution pH affects the simultaneous 
adsorption performance of different nanocomposites 
for HMs via the changes of the characteristics and the 
functional groups of surface adsorbent (with changes in 
pHpzc of adsorbent). Furthermore, the solution pH can 
affect the surficial charge of HMs within the solution. 
This process can create the electrostatic or repulsive force 
between HMs and surface of the adsorbent. Therefore, the 
optimal pH depends on the types of nanocomposites and 
target HMs. The maximum and minimum pHs in studies 
were 6 and 4, respectively, as shown in Table 2. Thus, the 
simultaneous removal rate of HMs decreased with an 
increase in pH value (4, 5, 23). 

Initial dye concentration has a great effect on adsorption 
process. Literature has shown that the removal efficiency 
of adsorbed HMs was decreased with increasing initial 
concentration of HMs. It can be concluded that the 
increase of initial concentration can affect available 
binding sites and active sites of the adsorbent surface. 
This was attributed to the fact that the simultaneous 
removal of HMs is a surface-mediated process. When 
more ions of HMs approached the surface of adsorbent, 
the available active sites decreased for per mole ions. Thus, 
lower removal rates of HMs were obtained with increasing 
initial concentration of HMs (7, 10).

The effect of the adsorbent dosage is another key 
parameter in the adsorption of HMs. According to the 
extracted data in SR, effectiveness and efficiency (%) of 

the HMs removal improve with increasing the adsorbent 
mass. As the adsorbent dosage grows, contact and 
interaction between the adsorption sites and the target 
molecule in the solution can increase due to the greater 
accessibility of surface binding sites.

The equilibrium time is known as a critical factor that 
substantially influences the adsorption process. Based 
on Table 2, the adsorption studies have been conducted 
in a period between 4 minutes to 48 hours. The results 
of records show that the adsorption rate and removal 
efficiency increases drastically, and then, increases 
gradually until the sorption system reached equilibrium. 
This issue can be explained by the fact that the plenty 
of the active sites available on the adsorbent exist at the 
beginning of the sorption process for simultaneous 
adsorption of metallic molecules. While, vacant sites on 
the adsorbents are occupied and saturated by ions of HMs 
with the increase of contact time (12). 

Adsorption kinetics and isotherm
The kinetic and isotherm studies in adsorption process 
were used to investigate the interactions between the 
adsorbent and the adsorbate in the solid–liquid phase. 
The kinetic and isotherm models can be used to describe 
the affinity strength of the adsorbent and adsorption 
capacity at different equilibrium concentrations. Five 
adsorption isotherms models (Langmuir, Freundlich, 
Redlich–Peterson, and Sips) and three adsorption 
kinetic models (pseudo-first-order, pseudo-second-
order, and intraparticle diffusion) were employed to 
describe experimental adsorption data. All the adsorption 
experiments with mixed pollutants on the nanocomposites 
were performed under optimal experimental conditions. 
Based on the value of coefficient of the kinetic model 
(R2) and very close the theoretical qe to experimental qexp 
values for all of the ions, all of the simultaneous adsorption 
studies reported that the pseudo-second-order model was 
fitted better than the pseudo-first-order and intraparticle 
diffusion models. On the basis of these findings, there 
is a strong chemical force between metal ions and the 
functional groups on the nanocomposite, which creates 
a strong surface complexation between adsorbates and 
adsorbent. Langmuir and Freundlich models were more 
relevant to the simultaneous adsorption processes for 
the metals. The Langmuir and Freundlich models were 
assumed as monolayer and multilayer adsorption models, 
respectively. Redlich–Peterson model indicates that 
the adsorption process was a hybrid chemical reaction 
sorption process. Therefore, the isotherm model of an 
absorption process depends on the synergy among the 
multi-functional components strengthened the removal 
of HMs, and different types of adsorption sites on the 
adsorbent surface (4, 5, 22, 23) 
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Adsorption mechanism
Some studies have evaluated simultaneous adsorption 
pathways for ions of HMs on various adsorbents under 
different experimental conditions. Based on the literature 
review, multiple pathways can be utilized to the adsorption 
of metal species onto nanocomposites. The main 
mechanisms of HMs adsorption onto nanostructures 
were electrostatic interactions and surface complexation 
between hydroxyl and carboxyl groups and positively 
charged metal ion, precipitation (the formation of 
insoluble minerals) (Figure 2) (4, 5, 7, 9). 

Future perspectives
Metal ions can exert indirect and direct harm to the 
public health once discharged into the water resources 
due to their non-biodegradable nature. Today, in order to 
protect aqueous matrices, various nanomaterials are used 
to remove pollutants from drinking water, wastewater and 
groundwater due to good performance (4, 8, 9, 14, 18). 
Therefore, researchers are recommended to synthesize 
non-toxic and safe nanoadsorbents through green 
methods. In addition, researchers investigate the existence 
of synergistic effects of HMs in aqueous media.

Conclusion
In this systematic review, the adsorption efficiency of 
different nanocomposites with high surface area were 
studied in the simultaneous adsorption of ions of HMs 
from aqueous matrices during 1990-2021. It is a big 
challenge to simultaneously adsorb of HMs efficiently 
and cost-effectively. It has been clearly demonstrated 
that nanocomposites exhibited remarkable adsorption 
performance for HMs and the simultaneous adsorption 
rates of HMs were higher than that of bulk materials. 
Generally, parameters such as initial concentration, 
contact time, and adsorbent dosage were discussed and 
this study confirmed that the simultaneous removal rate 
of HMs decreased with an increase in pH value. Findings 
indicate that the Langmuir and Freundlich models and 
the pseudo-second-order kinetic model have been widely 
used and the most popular to describe the equilibrium of 
HMs by nanoadsorbents.
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