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Abstract
Background: This study quantified the effect of four popular culture media in a biodiesel production 
study on the qualitative and quantitative lipid content, dry biomass, and lipid productivity of 
Nannochloropsis oculata.
Methods: Culture of microalgae was done separately in Walne, F/2, Sato, and TMRL media. In the 
logarithmic and stationary growth phases, biomass production and lipid accumulation of microalgae 
were measured and the constituents were identified by gas chromatography.
Results: N. oculata exhibited the highest rate of cell growth and biomass productivity of 0.2616 day-1 
and 2.652 gl-1 in the Walne medium. The highest level of biomass conversion into lipids in TMRL 
medium revealed a cell dry weight of 37.22%. Walne medium proved to have the most efficient lipid 
productivity which was 0.1057 gl-1 day-1. The highest amount of triacylglycerol (TAG) was obtained 
in Sato medium in the stationary growth phase and was 75.25% of the fatty acids.
Conclusion: The present study provides a practical benchmark, which allows the 
introduction of Walne as a suitable culture medium for N. oculata in biodiesel studies. 
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Introduction
Energy crisis is one of the most society’ s daunting chal-
lenge, as a result of the quick development of human ac-
tivities and rapid depletion of fossil fuels (1,2). The use of 
fossil fuels as an energy source is intimately linked with 
the ever-increasing emission of carbon dioxide (3), cli-
matic changes and global warming effects (4). In the past 
decade, attempts have been made to control these effects 
by reducing the level of CO2 in the atmosphere, imple-
menting the microalgae and producing renewable ener-
gy (5-8). Biodiesel as a sustainable and environmentally 
friendly alternative is a renewable, non-toxic, biodegrad-
able and CO2 neutral energy source (1,9-11). Microalgae 
are photosynthetic organisms and are a promising source 
for biodiesel production (12,13). Reacting microalgal oil 
in the form of triacylglycerol (TAG) with simple alcohol 
(known as “transesterification”), results in the formation 
of a chemical composition known as alkyl ester or bio-
diesel (14-16). In addition to fuel production, microalgae 
are commercially important for aquaculture and the food 

industry because they possess valuable products such as 
fatty acids, steroids, carotenoids and polysaccharides (17).
Nannochloropsis oculata is a marine unicellular micro-
algae belonging to the Eustigmatophyceae class (18-21), 
alongside their ability to synthesize polyunsaturated fatty 
acids (PUFAs) and carotenoids for human and marine 
aquaculture consumption, they can also accumulate large 
amounts of neutral lipids in the form of TAG (13,22-25).
In order to exploit these microalgae for biodiesel produc-
tion and reduce the total cost of it, it is necessary to opti-
mize biomass and lipid accumulation by obtaining a better 
understanding of the essential parameters contributing to 
the microalgae culture media (1,26,27). The composition 
of the culture media affects the specific growth rate, the 
maximum level of biomass production and change the 
biochemical composition of the biomass and lipids (5). 
For example, nutrient stress conditions is one of the most 
efficient ways of increasing lipid accumulation in cells and 
storage in the form of TAG with change in fatty acid (FA) 
composition in single cell microalgae (1,11). Studies have 
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shown that the quality and quantity of microalgae lipid 
content can be changed as a result of changes in growth 
conditions (temperature, light intensity) or medium com-
position (nitrogen, phosphate and iron concentration) 
(15,28,29). Furthermore, in order to achieve mass culti-
vation of microalgal biomass in an industrial scale, opti-
mization of the appropriate culture medium is one of the 
most important factors (7).
This study quantified the effect of 4 popular culture me-
dia in a biodiesel production study on the qualitative and 
quantitative lipid content, dry biomass, and lipid produc-
tivity of N. oculata.

Methods 
Microalgae
N. oculata was obtained from the research institute for 
Aquaculture in the south of the country in the form of 
stock culture with high density (25×106 cell/ml). This mi-
croalga is a eukaryotic photosynthetic microorganism and 
given its simple structure, it has a fast growth rate (28). 
According to the study of Chen et al (13), which deter-
mined the effects of cell density on microalgae growth and 
lipid composition, this study used microalgae with high 
density.

Culture conditions of N. oculata
In order to determine the most appropriate medium, mi-
croalgae was cultured separately in four media namely 
Walne, F/2, Sato, and TMRL. Table 1 shows the composi-
tion of each medium including every elemental nutrient 
and concentration. In all the media, the Gillard vitamins 
were used. Growth experiments were repeated three times 
using a 2L-Erlenmeyer flask and in refrigerated incuba-
tors equipped with temperature and light intensity. The 
optimum value of temperature, 20°C, was chosen on the 
basis of data reported in the literature (28) and according 
to the study of Banerjee et al (30) and Sen et al (31), the 
light intensity would be 70 µE m-2 s-1. In order to achieve 
higher efficiency, on the basis of Chiu et al study (14), air 
flow containing 2% of carbon dioxide was used for aera-
tion, after being saturated in water and passed through a 
0.45 µm filter. To avoid any kind of pollution during the 

different steps, the media and containers were sterilized in 
an autoclave at a temperature of 121°C.

Microalgae cell counting and dry weight
Cell density (cells mL-1) was measured using a ultraviolet-
visible spectrophotometer(UV-Vis) spectrophotometer 
(Shimadzu Corporation) at an absorbance wavelength of 
680 nm. Each sample was diluted to give an absorbance 
in the range of 0.1–1.0, if optical density was greater than 
1.0 (14).
Microalgae dry weight per liter (g L-1) was measured ac-
cording to the method previously reported (15). Microal-
gae cells were collected by centrifugation of wet biomass 
for 30 minutes in 15°C with 3000 rpm. The dry weight of 
marine microalgae samples was affected by salt absorbed 
on the cell surface and its presence in the intercellular wa-
ter ensured error in estimating the amount of biomass. 
This explains the differentiations in the amount of dry cell 
weight in various papers. Hence, before gravimetric analy-
sis, to remove salts, the centrifuged cells were again solved 
in 200 ml Ammonium format (0.5M, pH 8.0, adjusted 
with 1M NaOH( and centrifuged under the mentioned 
circumstances (30,32). The microalgae pellet was dried at 
100°C for 4 hours for dry weight measurement (13,30,32).

Measurement of growth rate
Specific growth rate of microalgae in logarithmic phase 
was calculated as follows:

2 1

ln - ln
-

f iN N
µ

t t
=                                                           (Eq. 1)

                            
  
Where; µ (day-1) is the specific growth rate, lnNi and lnNf 
are the cell densities (cell/ml) at the beginning and end 
of the logarithmic growth phase, respectively and t is the 
time (day) (1,14,5,30).

Extraction and measurement of lipid content and 
triacylglycerol
The methanol-chloroform (1/1, V/V) extraction meth-
od was used to extract total lipids from the dried cells 
(13,33,34). To remove residual microalgae, the extraction 

Table 1. The media composition used in this study (mmol/L)

Element's nutrients
Medium

Walne F/2 Sato TMRL
MnCl2.4H2o 7.6717×10-4 0.3452 5.1784×10-4 -
CoCl2.6H2o 0.084 0.042 3.3623×10-4 -

CuSo4.5H2o 0.0801 0.04 1.602×10-5 -

FeCl3 4.932×10-3 0.0194 1.8934×10-5 10-5

NaHCo3 - - 1.9998 -

(NH4)6Mo7O24.4H2O 7.2814×10-4 4.8543×10-6 - -

ZnCl2 0.154 0.0765 2.2012×10-4 -

NaNO3 1.1765 1.1765 0.8824 0.8824

H3BO3 0.5434 - 0.0556 -

Na2EDTA.2H2O 0.1208 0.0117 8.0593×10-3 -
NaH2PO4.2H2O 0.0755 0.0387 0.0193 0.0193
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lipids were filtered on membranes with 0.45 μm mean 
pore diameter. After washing twice with methanol and 
its complete evaporation, gravimetric analysis was done 
and part of the lipid fraction expressed as the percent of 
dry cell weight (28). Lipid productivity was calculated by 
(9,35):

( ) ( )f f i i-1 -1
Lipid

(C DCW ) C DCW
P gl day  

T
× − ×

=            (Eq. 2)

Where; PLipid is the lipid productivity, Cf and DCWf are the 
lipid content (g/g) and biomass (g/l) of the microalgae in 
the final stationary growth phase, respectively; Ci and DCWi 
are the lipid content (g/g) and biomass (g/l) of the micro-
algae in the initial stationary growth phase, respectively; 
and T is the cultivation time (day). After the measurement 
of total lipid, the dried lipid was solved in 0.4 ml of Isopro-
pyl alcohol and the TAG was estimated by an enzymatic 
colorimetric method using a commercial kit (36). 

Determination of fatty acid profiles
The direct esterification method was used to measure the 
fatty acid property. A mixture of 100 mg of lyophilized mi-
croalgae and 8 ml of KOH was sonicated for 3 minutes. 
For saponification, the mixture was heated to 100°C for 15 
minutes and cooled to room temperature. For esterifica-
tion, 8 ml of 0.7 N HCl in methanol and BF3/CH3OH was 
added to the mixture (14% V/V) and again was heated to 
100°C for 15 minutes. After cooling to room temperature, 
to avoid emulsification, 2 ml of a saturated solution of so-
dium chloride was added. The FAMEs were extracted by 
adding aliquots of n-hexane. The FAMEs in the hexane 
layer were analyzed using standard gas chromatography 
(Agilent technologies 7890A-5975c) with a capillary col-
umn and a flame ionization detector. Nitrogen was used 
as the carrier gas and delivered at a rate of 1.5 mL min−1. 
The temperature was programmed to increase from 130°C 
to 180°C at a rate of 10°C min-1 and thereafter ramped to 
210°C at a rate of 2°C min-1. The injector and detector 
were kept at 220°C and 250°C, respectively (1,35).

Statistics
All values were expressed as mean ± standard deviation 
(SD). Data were analyzed using one-way analysis of vari-
ance (ANOVA) and in order to determine the statistical 
difference between media, the Tukey test was used. A value 
of P < 0.05 was considered statistically significant (21,24).

Results
Effects of medium on cell growth rate of N. oculata
Figure 1 shows the cell growth rate of N. oculata in four 
different media. N. oculata exhibited the highest growth 
rate in the Walne medium. Except for the TMRL medium, 
in which there was no logarithmic phase, in other media, 
the microalgae after a lag phase of 24 hours, entered the 
logarithmic growth phase. The results of the one-way 
ANOVA showed that the observed differences between 
media types were significant (P < 0.05). Tukey test also 
confirmed that they were not put in homogenous groups 

and the Walne medium had considerable difference with 
F/2 (P = 0.008), Sato (P = 0.002) and TMRL (P = 0.000) 
media. There was no significant statistical difference be-
tween F/2, Sato and TMRL media (P ˃  0.05).

Effects of medium on biomass and lipid production
Figure 2 shows the results of medium effects on biomass 
production in two logarithmic and stationary growth 
phases. Walne medium recorded the highest biomass pro-
duction. The results of one-way ANOVA showed a large 
variation in biomass production between the culture me-
dia used. Tukey test also confirmed that they were not in 
homogenous groups and the Walne medium had a signifi-
cant difference with the F/2 (P = 0.005), Sato (P = 0.001) 
and TMRL (P = 0.000) media. Biomass production did 
not vary greatly between the F/2, Sato and TMRL media 
(P ˃  0.05). 
The results of medium effects on lipid production in 2 
logarithmic and stationary growth phases are shown in 
Figure 3. The TMRL medium recorded the highest per-
centage of biomass conversion to lipid. The results of one-
way ANOVA showed that the difference between lipid 
conversion percentages in the used media was significant. 
Also, the Tukey test showed that the differences between 
all media were significant (P < 0.001) but between Walne 
and F/2 media, no significant differences were observed 
(P = 0.065).

Effect of medium on fatty acids composition
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Figure 1. Cell growth rate of Nannochloropsis oculata in Walne, 
F/2, Sato and TMRL media.

Figure 2. Biomass production by Nannochloropsis oculata in 
logarithmic and stationary growth phases in various media (in 
TMRL medium, there was no logarithmic growth phase).
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The results of fatty acids composition of N. oculata grown 
in various media during logarithmic and stationary 
growth phases are shown in Table 2.

Discussion
Maximal cell densities, specific growth rates and biomass 
production
N, P, K, Mg, Ca, S, Fe, Cu, Mn, and Zn are essential el-
ements for the growth of green algae added to culture 
media in the form of salts (37). Due to the existence of 
enough nutrients in the Walne and F/2 media, the loga-
rithmic growth phase continued until the fifth day but it 
reached the end of the logarithmic phase on the fourth 
day, in the Sato medium. In the TMRL medium, the loga-
rithmic phase was so short and could be ignored.
N. oculata reached the highest cell density (84×106 cell/
ml) (Figure 1) and highest biomass production (2.652 g/l) 
(Figure 2) in the Walne medium at the end of the station-
ary growth phase and conformed to the values reported 
by Olofsson et al (11), Solovchenko et al (25) and Chiu 
et al (14). According to Table 1, unlike other media, the 
Walne medium used two nitrogen sources (sodium nitrate 
and ammonium molybdate). Nitrogen as an important 
constituent of cellular protein and chlorophyll molecules 
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Figure 3. Lipid production by Nannochloropsis oculata in 
logarithmic and stationary growth phases in various mediums (in 
TMRL medium, there was no logarithmic growth phase).

Table 2. Fatty acid composition in dry weight, percentage of Nannochloropsis oculata grown in Walne, F/2, Sato and TMRL medium during 
logarithmic and stationary phases

Fatty acid Name
Medium

Walne F/2 Sato TMRL
Logarithmic Stationary Logarithmic Stationary Logarithmic Stationary Stationary

C14:0 Myristic acid 3.5a 5.59 3.1 6.45 3.1 4.79 3.3
C15:0 - 0.2 0.34 0.1 0 0.2 0.12 0.2

C16:0 Palmitic acid 22.76 28.57 29.97 34.36 30.5 35.17 34.3

C16:1n-7 Palmitoleic acid 18.45 25.04 19.3 23.19 20.11 24.16 22.56

C18:0 Stearic acid 1.01 0.73 0.8 0.8 1 0.89 0.7

C18:1n-9 Oleic acid 6.3 5.24 7.4 7.85 9.6 11.01 7.5

C18:2n-6 Linoleic acid 3.15 1.12 1.7 0.23 2.4 1.15 1.2

C20:0 Eicosanoic acid 0.1 0 0.1 0.03 0.1 0 0.1

C20:4n-6 Arachidonic acid 3.73 2.46 3.25 1.1 2.98 0.76 3.21

C20:5n-3 Eicosapentaenoic acid 
(EPA) 36.11 22.19 27.6 19.98 24.2 16.17 17.3

a Values represent mean of two replicate samples.

are required for microalgae cell growth (21). Another rea-
son for higher growth rate and biomass production in the 
Walne medium was the existence of ammonium which is 
a necessary element for the microalgae and its concentra-
tion in the Walne medium was 150 times more than the 
F/2 medium. This was not observed in other media. It 
takes more energy to assimilate NO3-N than to assimilate 
NH4+-N, hence microalgae prefer NH4+-N in the medium 
(21). On the other hand, in consideration of the role of 
phosphate in producing ATP required for photosynthesis 
and rapid microalgae growth (38), its concentration in 
Walne medium was double that of the F/2 medium and 
4 times the other media. Copper is one of the required 
elements for microalgae and is an important part of the 
plastocyanin protein in the electron transport chain. The 
concentration of copper in the Walne medium is consid-
erably higher than other media.
The fastest specific growth rate among the media was re-
corded in the Walne medium (0.2616 day-1), while the F/2 
and Sato media were 0.1066 day-1 and 0.08 day-1, respec-
tively. The specific growth rates found in the present study 
were not in the median range of other published studies. 
In the study of Chiu et al (14) and Banerjee et al (30) on 
N. oculata cultivation, the specific growth rate was 0.571 
day-1 and 0.004 day-1. Differences in growth rates com-
pared to the other studies could be due to differences in 
culturing methods, reactor geometry, prior culture his-
tory, light intensity and temperature (15,20).

Lipid accumulation and lipid productivity
Algal biomass is composed of three main components 
namely carbohydrates, proteins and lipids (natural oils) 
(16). To increase the proportion of the biomass that con-
tains a useful lipid, different strategies including nutrient 
starvation, bioprocess optimization and genetic modifica-
tion (39,40) were used. Under stress conditions, photo-
synthetic activity in microalgae decreases and the excess 
energy might be stored in the form of valuable com-
pounds such as lipids (17,24). Nutrient starvation is one 
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of the stress conditions that can be applied to microalgae 
by culture medium modifications and therefore change 
the biochemical composition of the biomass. Nitrogen 
and phosphorus are the most common restrictive factors 
in the media that can lead to lipid accumulation. In nitro-
gen limiting media, the lipid content usually increases in 
the algae due to less susceptibility of lipid-synthesizing en-
zymes for disorganization than carbohydrate synthesizing 
enzymes due to nitrogen deprivation (2). Also, decreasing 
the nitrate concentration of the medium causes a decrease 
in the amount of chlorophyll II and limits biochemical 
protein synthesis (28,37). According to the results in Fig-
ure 3, the maximum percentage of converting biomass to 
lipid was attained in the TMRL medium (37.22% of dry 
cell weight). Also the results of lipid analysis in two loga-
rithmic and stationary growth phases showed that lipid 
accumulation in microalgae cells had a direct relation 
to their growth phases and growth from the logarithmic 
to the stationary growth phase was accompanied by in-
crease in lipid percentage. These results matched the re-
sults of Nigam et al (6), Hu and Gao (19) and Gouveia and 
Oliveira (4) studies.
The lipid content or biomass productions are not appro-
priate scales for microalgae lipid yields alone in biodiesel 
production and the most crucial comparative measure is 
lipid productivity that must be calculated using Equation 
2 (15). The maximum lipid productivity was related to the 
Walne medium 0.1057 and for the F/2, Sato and TMRL 
was 0.0462, 0.0417, 0.023 gl-1 day-1 sequence, respectively. 
In Gouveia and Oliveira study (4), the lipid productivity 
was 0.09 gl-1 day-1 and in Griffiths and Harrison study (10), 
it was 0.082 gl-1 day-1 and matched the results obtained in 
this study.

Fatty acid compositions
Vegetable oils currently used for biodiesel productions are 
mainly C16 and C18. Olofsson et al (11) proposed myris-
tic acid, palmitic acid, palmitoleic acid, stearic acid and 
oleic acid as important fatty acids for biodiesel produc-
tion and consisted more than 45%-78% of all fatty acid 
compositions. According to the results of this study, these 
fatty acids consist of 65.7%, 72.65%, 76.02% and 68.38% 
of fatty acid composition in the dry weight of N. oculata 
grown in the Walne, F/2, Sato and TMRL media during 
the stationary phase.
Also, the microalgae oil in the form of TAG can be con-
verted to biodiesel. The TAG of N. oculata consists of 
saturated and monounsaturated fatty acids and is mainly 
stored in vacuoles within the cell (11,24). In this study, 
TAG consisted of 64.78%, 71.88%, 75.25% and 67.96% of 
fatty acid composition in dry weight of N. oculata grown 
in the Walne, F/2, Sato and TMRL media during the sta-
tionary phase. Therefore, the Sato medium quantitatively 
provided the maximum amount of TAG for biodiesel pro-
duction.

Conclusion
Lab scale experiments have an important role in develop-

ing biodiesel studies and finally scale-up production. In 
this study, a microalgae culture medium was surveyed as a 
major aspect of biodiesel production. The results showed 
that the best medium for N. oculata cultivation is Walne 
and the microalgae had maximum efficiency in the sta-
tionary growth phase. One advantage of this study is the 
use of N. oculata for aquaculture and human consump-
tions. 
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