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Abstract
Background: The presence of medicines in the environment is considered as a serious threat to the 
human health. The entrance of these substances into the water sources causes soil pollution, which 
eventually leads to the environmental pollution and it creates some problems for the public health. Also, 
increasing antibiotic resistant bacteria has attracted the attention of researchers to the use of natural 
resources such as marine products, for producing new antibiotics. The aim of this study was to evaluate 
antimicrobial activities of powdered cuttlebone against Klebsiella oxytoca, Staphylococcus aureus, and 
Aspergillus flavus.
Methods: At first, cuttlebones were washed, dried, and powdered. Then, the powdered cuttlebone 
was characterized. In the next step, its antimicrobial activities were evaluated using agar well diffusion 
technique, and minimum inhibitory concentration (MIC) was calculated. 
Results: The powdered cuttlebone was found to be effective against K. oxytoca (24 mm, MIC: 10-1 
mg/mL), but no antimicrobial response was found against S. aureus. Also, the powdered cuttlebone 
antifungal activity and MIC against A. flavus were recorded 23 mm and 10-1 mg/mL, respectively. 
Conclusion: The obtained results suggest antimicrobial activities of powdered cuttlebone, which are 
concentration dependent. Furthermore, cuttlebone can be used as an accessible natural source to 
provide novel, low cost, and safe antimicrobial agents.
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Introduction
Staphylococcus aureus is a gram positive and round-
shaped bacterium, which is a member of Firmicutes 
species. S. aureus is the leading cause of human infections, 
which have a wide range in the environment and food 
sources. It can be transferred through food contact 
surfaces, hands, air, dust, etc. It typically causes skin 
infections, pneumonia, endocarditis, and osteomyelitis 
(1). Klebsiella oxytoca is one of several Klebsiella bacteria. 
Klebsiella spp. are ever-present in the environment. They 
could isolate from the soils, plants, and water surfaces. 
These bacteria are naturally found in the intestinal tract, 
mouth, and nose. Klebsiella spp. are opportunistic gram-
negative, non-motile, and rod-shaped bacteria with a 
prominent polysaccharide capsule which belong to the 

Enterobacteriaceae family. K. oxytoca is considered as an 
opportunistic pathogen and is recognized as a clinically 
significant nosocomial infection in children and neonates 
(2). 

Aspergillus flavus is an opportunistic pathogen in 
immunosuppressed patients, which is found in the soils 
and causes diseases in the agricultural products. A. 
flavus is the major producer of aflatoxin. Aflatoxins are 
the second strong poisonous metabolites, which infect 
agricultural products and make serious threat to both 
humans and livestock health (3).

Due to the effects of pathogenic bacteria and toxin-
producing fungi on the human health, it seems necessary 
to control them. The growth of dangerous bacteria and 
fungi is usually limited using chemical and synthetic 
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preservatives. These materials have some side effects such 
as teratogenic and carcinogenic effects. The mentioned 
issues make concerns for the health officials. Today, 
because of the outbreak of new infectious diseases 
and antibiotic-resistant bacteria, it is necessary to use 
novel antimicrobial compounds with various chemical 
formations which have new action mechanisms. These 
reasons have forced researchers to look for new antibiotics 
from various renewable natural sources such as marine 
origin materials (4,5), citrus extract (6), natural oils (7), 
medicinal herbs like ginger (8), garlic (9), etc. 

The antimicrobial activities studies supply valuable 
information about antibiotic discoveries, and also, provide 
a new insight into the extraction of bioactive compounds 
from natural sources (10). One of the natural resources 
that is considered these days is Mollusca marine animals. 
Cuttlefish is one of the Mollusca marine animals that 
belongs to the class Cephalopoda and order Sepioidea (11). 

Recent studies have shown that cuttlefish is among 
the most intelligent species of invertebrates. They are 
nocturnal and hunt crabs and shrimps in the night. 
Cuttlefish have a unique internal shell, which is called 
cuttlebone and exists in all members of Sepiidae family. 
In the native dialect, it is called seabed (Figures 1a and b). 

Cuttlebone is a hard brittle internal structure with high 
porosity in the back of the cuttlefish body, which is oval 
shaped and spongy. In fact, cuttlebone is a porous internal 

shell that is made primarily of aragonite. It is a rigid 
buoyancy tank and functionally similar to swim bladder in 
fishes. It plays a key role in the protection of vital organs. 
Cuttlebone is made up of two parts: Organic part (protein 
and β-chitin) and inorganic part (calcium phosphate, 
sodium, magnesium, phosphorus, and mineral salts). 
Actually, cuttlebone is a marine product that contains no 
toxins or contaminants (12-16).

Due to the unique structure, cuttlebone has many 
pharmaceutical and industrial applications. It can be 
applied in the treatment of bleeding and control of external 
infections. Also, it can be used as a low-cost and non-
toxic adsorbent in dyes, toxic elements, and removal of 
heavy metals from water and wastewater (17,18). Its other 
applications include adjusting the bird’s liver and kidney 
function, oil spill clean-up, healing of indomethacin-
induced acute gastric mucosal lesions in rats, biodiesel 
production, nanobiocomposite synthesis, preparing bone 
grafts, as an antioxidant, etc (15,18-30). 

It is noteworthy that previous studies have shown 
antibacterial and antifungal activities of polysaccharides 
and chitosan extracted from the cuttlebone. 

According to the literature, antimicrobial activities 
of powdered cuttlebone have not been evaluated yet. In 
addition, because of several reasons such as easy availability, 
affordability, and naturalness of the cuttlebone, the 
present study was conducted to evaluate the antimicrobial 
activities of powdered cuttlebone against K. oxytoca, S. 
aureus, and A. flavus.

Materials and Methods
Preparation of cuttlebone powder 
For this purpose, cuttlebones were collected from Bandar 
Lengeh county, Hormozgan, then, were washed by 
distilled water, and dried. After drying, the cuttlebones 
were powdered using an electric mill A320R1 (Moulinex, 
France). Then, the obtained powder was sterilized in an 
autoclave (Reyhan Teb, Iran) at 121°C for 15 minutes. 
Afterwards, the powder was characterized using a WQF-
510 FT-IR spectrometer (Bio-Equip, China). Also, the 
morphology and chemical composition of the powdered 
cuttlebone were investigated by the field emission scanning 
electron microscope (FESEM) and EDS-mapping (MIRA3 
TESCAN XMU).

 In the next step, to prepare the concentrations of serial 
dilutions of cuttlebone in a range of 10-1-10-4 mg/mL, 1 
mg of the powdered cuttlebone was added to 10 mL of the 
ringer’s solution (Merck, Germany) and was sonicated for 
30 minutes. 

Microbial culture
Lyophilized K. oxytoca PTCC 1402, S. aureus PTCC 1112, 
and A. flavus PTCC 5006 strains were purchased from 
Persian type culture collection (PTCC).

First, Mueller-Hinton agar (MHA) and Potato Dextrose Figure 1. Cuttlebone isolated from cuttlefish (a), cuttlebone (b).

(a)

(b)
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agar (PDA) (Merck, Germany) were prepared and 
sterilized. Then, they were poured into the sterile plates. 

The lyophilized bacterial and fungal were revived. Then, 
the 24 hour-old cultures of K. oxytoca and S. aureus, and 72 
hour-old fungal culture of A. flavus were inoculated to the 
MHA and PDA media cultures, respectively, using a sterile 
swab. In addition, the standard antibiotic tetracycline and 
amphotericin B were used as negative controls. Also, S. 
aureus, K. oxytoca, and A. flavus suspensions were used as 
positive controls.

Antibacterial and antifungal activities survey 
0.1 mL of cuttlebone with different concentrations (10-1-
10-4 mg/mL) was transferred by a sterile pipette into the 
wells (6 mm diameter). The wells were created on the agar 
media using a sterile cork borer. The plates were incubated 
at 37°C for 24 and 72 hours, respectively.

The antibacterial and antifungal activities of cuttlebone 
were investigated by agar well diffusion technique (31). 
To determine the minimum inhibitory concentration 
(MIC), the microbial cultures were checked for the 
presence or absence of growth zone around the wells and 
the growth inhibition halos were measured using a ruler. 
The experiments were repeated three times to prevent any 
errors in the results.

Results 
Cuttlebone characterization
The FT-IR spectrum of cuttlebone at 400-4000 cm–1 is 
demonstrated in Figure 2.
To investigate the morphology and chemical composition 
of the cuttlebone, the FESEM image and elemental 
mapping were evaluated (Figure 3).

Antimicrobial activities
The powdered cuttlebone showed a good antibacterial 
activity against K. oxytoca (Table 1). However, no 
antibacterial response was observed against S. aureus 
(Figure 4a) at all concentrations. On the other hand, S. 
aureus was resistant against the powdered cuttlebone. It 
indicates that antibacterial activity was dependent on 

the cuttlebone concentration. In the negative control 
samples, no activity was observed. The highest and lowest 
inhibition zones against K. oxytocic were observed to be 
24 and 11 mm, respectively (Figure 4b). 

Antifungal activity 
The results shown in Table 1 summarize antifungal 
activity of cuttlebone. In the negative control samples, no 
antifungal activity was observed against A. flavus. The 
highest and lowest inhibition zones against A. flavus were 
observed to be 23 and 9 mm, respectively. In addition, 
Figure 5 shows the highest inhibition zone against A. 
flavus.

Minimum inhibitory concentration 
Table 2 shows the MIC values of powdered cuttlebone 
against K. oxytoca and A. flavus. The measured inhibition 
zones were compared with the negative controls and no 
activity was recorded for all pathogens. The highest and Figure 2. The FT-IR spectrum of cuttlebone.

Figure 3. The FESEM image (a) and elemental mapping (b) of 
the cuttlebone.

Figure 4. Cuttlebone antibacterial activity against S. aureus (a) 
and K. oxytocic (b).

(b)

(a)
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lowest inhibition zones were obtained to be 10-2 and 10-3 
mg/mL against K. oxytoca and A. flavus, respectively.

Discussion
Regarding the chemical structure of cuttlebone, as shown 
in Figure 2, wide absorption band is observed at 3398 
cm–1, that can be related to O–H stretching vibrations 
on the adsorbent surface. The presence of the absorption 
bands at 2922 and 2522 cm–1 is because of the alkyl 
groups (C–H) and amine groups (N–H) in the cuttlebone 
structure, respectively. The absorption bands at 1457 cm–1 
can be related to pyranose ring bending vibrations. Also, 
the absorption bands at 1082, 853, and 712 cm–1 can be 
attributed to C–O, C–H, and C–H2 stretching vibrations, 
respectively. According to the results of FESEM image 
and elemental mapping, the presence of Ca, Mg, N, Na, 
P, S, C, and O in the chemical structure of cuttlebone was 
confirmed (Figure 3). 

The main aim of the present study was to evaluate 
antimicrobial activities of powdered cuttlebone against K. 
oxytoca, S. aureus, and A. flavus. The results clearly show 
that relatively good antimicrobial activities were obtained 
by the powdered cuttlebone against K. oxytoca and A. 
flavus (Tables 1 and 2 and Figures 4 and 5). Nevertheless, 
at the same time, no antibacterial activity was observed 
against S. aureus. In the present research, the maximum 
inhibition zones were observed against K. oxytoca (24 
mm) and A. flavus (23 mm), which illustrate and support 
the antimicrobial activities of powdered cuttlebone.

 The findings of the present study showed the 
antimicrobial activities of powdered cuttlebone that it 
could be due to the presence of some polysaccharides 
such as chitosan and inorganic materials such as CaCO3 
in the chemical structure of cuttlebone. Also, the results 
of previous studies have shown the antimicrobial function 
of the polysaccharides extracted from cuttlebone. In 

a study by Liu et al. (2006), the chitosan isolated from 
Sepioteuthis lessoniana showed an antibacterial activity 
against S. aureus, K. pneumonia, and V. cholerae (32). 
Shanmugam et al investigated the antibacterial activity 
of chitosan and phosphorylated chitosan extracted from 
the cuttlebone of Sepia kobiensis against some human 
pathogens (33). Similarly, Vairamani et al investigated 
the antibacterial activity of Sepiella inermis cuttlebone 
against human pathogens (34). Ramasamy et al evaluated 
antimicrobial potential of the polysaccharide extracted 
from cuttlebone and the methanolic extract extracted 
from the tissues of Sepia prashadi Winkworth against 
human pathogenic bacteria and fungi and reported the 
antimicrobial activities of S. prashadi Winkworth (35). 
Also, the antifungal activity of Sepia aculeata and Sepia 
brevimana cuttlebones was reported against some fungal 
strains (36).

Chitosan is a polymeric macromolecule which is not 
capable to pass the bacteria outer membrane. Therefore, 
it does not have a direct access to the cell intracellular 
sections. Nevertheless, chitosan due to the amino 
group in C-2 position, which has a positive charge in 
its structure, can interact with the anionic components 
(lipopolysaccharides and proteins) of the bacterial 
surface. Nevertheless, it shows that the chitosan biological 
activity depends on the chitosan pH solution, the target 
microorganism, and physico-chemical properties of 
chitosan. In addition, chitosan is a water-soluble derivative 
that could increase the permeability of bacterial cell 
membrane, which leads to the bacterial death by releasing 
cellular contents. Also, chitosan can precipitate on the 
microbial cell surface. Then, it makes an impervious layer 

Table 1. Antibacterial and antifungal activities of powdered cuttlebone

Strains
Inhibition Zone (mm)

Negative Control Positive Control10-1

(mg/mL)
10-2

(mg/mL)
10-3

(mg/mL)
10-4

(mg/mL)

S. aureus _ _ _ _ _ 39 ± 0.2

K. oxytoca 24 ± 0.2 12 ± 0.1 _ _ _ 46 ± 0.2

A. flavus 23 ± 0.1 13 ± 0.2 9 ± 0.1 _ _ 43 ± 0.2

Note. Values are presented as mean inhibition zone (mm) ± SD of three replicates.

Table 2. Cuttlebone MIC value against Klebsiella oxytoca, and Aspergillus 
flavus

Strains
Powdered Cuttlebone (mg/mL)

10-1 10-2 10-3 10-4

S. aureus +++ +++ +++ +++

K. oxytoca * + +++ +++

A. flavus * + ++ +++

*MIC concentration, +Slight growth, ++Medium growth, +++Strong growth.

Figure 5. Cuttlebone antifungal activity against Aspergillus flavus.
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around the cell and blocks the channels, thereby, prevent 
from the transportation of essential nutrition into the 
bacterial cell, which leading to cell death (37-42).

CaCO3 is an inorganic material which forms the 
main part of cuttlebone structure. This compound with 
different concentrations is able to inhibit the growth of 
some bacteria and fungi species. The CaCO3 can prevents 
of bacteria cell wall formation. Failure of the cell wall 
synthesis process leads to cell death due to lysis. Also, 
when the membrane cell contact with the material, the 
bacterial metabolism is disrupted (43). 

Therefore, the presence of chitosan and CaCO3 was 
the possible reason for the antimicrobial activities of 
powdered cuttlebone against K. oxytoca and A. flavus. 
Also, it seems that chitosan and CaCO3 which exist in 
the powdered form of cuttlebone, could not penetrate to 
the peptidoglycan cell wall of S. aureus and destroyed it. 
Perhaps, it could be due to the type of the bacterial cell wall 
or cuttlebone concentrations. The noteworthy point in the 
mentioned studies is that the antimicrobial activities are 
strongly dependent on the type of target microorganism, 
which is consistent with the results of the present study. 

For comparative testing of novel drugs, MIC estimation 
is extensively used. It is applied to establish the organisms’ 
susceptibility in the clinical laboratories (36). In the 
present study, MIC value for the powdered cuttlebone 
against both K. oxytoca and A. flavus was reported as 10-1 
mg/mL, which indicates the best cuttlebone concentration 
that has strong antimicrobial activities.

Recently, the bioactivity study of natural products such 
as marine microorganisms due to their pharmacological 
application potential has received considerable attention. 
The initial efforts to study the antimicrobial activity 
in marine organisms were made around 1950s (33). 
Antibacterial activity has formerly been evaluated in the 
widespread range in the molluscan species such as oyster, 
mussel sea hare, etc. The searching principium for drugs 
from the marine environment is that marine animals 
and plants have a constant competition for reproduction, 
space, predation, etc (44,45). Although, most of the agents 
isolated from the marine sources, shows antimicrobial 
activities but they were not strong enough to compete 
with all classical antimicrobials obtained from the other 
microorganisms. The larger part of marine organisms 
has not been investigated to identify effective antibiotics 
yet. But many researchers investigated the antibacterial 
activity of the extracted materials from the body tissue of 
marine animals (46,47). 

Different studies have shown the frequency of 
scrutable antimicrobial activity in marine molluscs. So, 
according to the mentioned results, it can be concluded 
that cephalopods are a source in the discovery of new 
substances to the development of drugs especially new 
types of antibiotics which have a better efficiency than the 
synthetic antibiotics (46-50). Generally, there are a few 
studies on the antimicrobial activities of internal bone of 

cephalopods. 
The conspicuous point in the mentioned studies is that 

the cuttlebone biological activity is significantly dependent 
on the target microorganism species, cuttlebone structure, 
and its concentration. In the present study, the activity was 
also dependent on the cuttlebone concentration and type 
of microorganisms, which is consistent with the results of 
previous studies.

Conclusion
In different studies with various methods, the high 
frequency of detectable antimicrobial activities in the 
marine molluscs was reported. In the present study, the 
powdered cuttlebone showed antibacterial and antifungal 
activities against K. oxytoca and A. flavus, respectively. 
Additionally, the present study showed that the cuttlebone 
in the powdered form, which is thrown out as waste in 
the industries, is a very good and encouraging accessible 
natural antimicrobial source. Therefore, it is concluded 
that cuttlebones can be considered as a natural source 
of new substances to provide novel, low-cost, and safe 
antimicrobial agents.
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