[صفحه اصلی ]   [Archive]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 2، شماره 4 - ( 9-1394 ) ::
جلد 2 شماره 4 صفحات 173-178 برگشت به فهرست نسخه ها
Sulfur dioxide AQI modeling by artificial neural network in Tehran between 2007 and 2013
چکیده:   (7430 مشاهده)

Background: Air pollution and concerns about health impacts have been raised in metropolitan cities like Tehran. Trend and prediction of air pollutants can show the effectiveness of strategies for the management and control of air pollution. Artificial neural network (ANN) technique is widely used as a reliable method for modeling of air pollutants in urban areas. Therefore, the aim of current study was to evaluate the trend of sulfur dioxide (SO2) air quality index (AQI) in Tehran using ANN.
Methods: The dataset of SO2 concentration and AQI in Tehran between 2007 and 2013 for 2550 days were obtained from air quality monitoring fix stations belonging to the Department of Environment (DOE). These data were used as input for the ANN and nonlinear autoregressive (NAR) model using Matlab (R2014a) software.
Results: Daily and annual mean concentration of SO2 except 2008 (0.037 ppm) was less than the EPA standard (0.14 and 0.03 ppm, respectively). Trend of SO2 AQI showed the variation of SO2 during different days, but the study declined overtime and the predicted trend is higher than the actual trend.
Conclusion: The trend of SO2 AQI in this study, despite daily fluctuations in ambient air of Tehran over the period of the study have decreased and the difference between the predicted and actual trends can be related to various factors, such as change in management and control of SO2 emissions strategy and lack of effective parameters in SO2 emissions in predicting model.

متن کامل [PDF 1218 kb]   (2181 دریافت)    
نوع مطالعه: مقاله اصیل | موضوع مقاله: عمومى
دریافت: 1394/9/30 | پذیرش: 1394/9/30 | انتشار: 1394/9/30
ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Motesaddi S, Nowrouz P, Alizadeh B, Khalili F, Nemati R. Sulfur dioxide AQI modeling by artificial neural network in Tehran between 2007 and 2013. Environ. health eng. manag.. 2015; 2 (4) :173-178
URL: http://ehemj.com/article-1-111-fa.html

Sulfur dioxide AQI modeling by artificial neural network in Tehran between 2007 and 2013. مجله مدیریت و مهندسی بهداشت محیط. 1394; 2 (4) :173-178

URL: http://ehemj.com/article-1-111-fa.html



دوره 2، شماره 4 - ( 9-1394 ) برگشت به فهرست نسخه ها
مجله مدیریت و مهندسی بهداشت محیط Environmental Health Engineering And Management Journal
Persian site map - English site map - Created in 0.04 seconds with 30 queries by YEKTAWEB 4319