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Abstract
Background: Intervertebral disc degeneration (IDD) is a common disability in the working-age 
population. The underlying pathogenesis of IDD needs elucidation. This study aimed to determine 
differentially expressed circular RNAs (circRNAs) in IDD by bioinformatics. Additionally, the 
environmental and clinical factors involved in IDD pathogenesis were reviewed.
Methods: The circRNA array profiling of patients with IDD and healthy individuals (GSE67566) was 
acquired from Gene Expression Omnibus (GEO). GEO2R was employed to analyze the expression 
profiles of the circRNAs. Functional in silico analysis was done on circRNAs with the highest differential 
expression. Environmental and clinical factors were reviewed through PubMed and Google Scholar. 
Results: Twenty-five circRNAs were differentially expressed in IDD. Two circRNAs (hsa_
circRNA_101645 and hsa_circRNA_101852) exhibited the most downregulated and upregulated 
expressions. The functional in silico analysis showed that the aforementioned circRNAs harbored target 
sites for AGO2 and EIF4A3 and several microRNAs. The upshots indicated that these 2 circular circRNAs 
might sponge hsa-miR-330-3p, hsa-miR-502-5p, hsa-miR-662, hsa-miR-874, and hsa-miR-646 and 
regulate PSD3, SIK2, PCYT1B, ARID5B, MTMR3, and HIPK2 expressions, which play significant roles 
in autophagy and cellular senescence. Temperature, heavy metal exposure, age, overweight, occupation, 
exercise, hypertension, and smoking were the environmental and clinical factors associated with IDD 
progression.
Conclusion: Although the results need confirmation by experimental analysis, they reflect the possible 
role of particular circRNAs in IDD pathogenesis. The controversy concerning the association between 
IDD and environmental and clinical factors necessitates in-depth population research. Investigating 
novel molecular regulatory markers like circRNAs could clarify the underlying molecular mechanisms 
of IDD.
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Introduction 
Intervertebral disc degeneration (IDD) is the common 
cause of low back pain in about 70% of individuals 
worldwide. IDD can start early, so that 20% of people 
have mild disc degeneration in their teens, and it becomes 
severe with aging (1-3). Low back pain undermines the 
quality of life of its sufferers and imposes tremendous 
economic burdens comparable to or even worse than 
those of coronary heart disease and other major diseases 
such as diabetes, Alzheimer’s, and renal diseases (4). 
Similar to other multifactorial diseases, the etiology of 
IDD is complicated, with the exact mechanism of IDD 
pathogenesis needing elucidation. Nonetheless, it is widely 

recognized that the contributors to IDD progression are 
not only genetic predispositions and molecular markers 
but also aging and environmental factors, including 
temperature, heavy metal pollution, work-related 
biomechanical factors (e.g., physical workload, hard work, 
working periods exceeding 8 hours, and work-related 
stress) (5-9). Interestingly, tall individuals are at greater 
risk of IDD development (10).

Several studies have determined that mutations in the 
COL9A1, COL9A2, and COL9A3 genes encode collagen 
type IX and are, thus, associated with disc degeneration 
(11, 12). Aggrecan, also termed “cartilage-specific 
proteoglycan core protein” or “chondroitin sulfate 
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proteoglycan 1”, contains many chondroitin sulfate chains 
and builds the nucleus pulposus. Changes in the length 
of the variable-number tandem repeat in the ACAN gene, 
which encodes aggrecan, result in differences in aggrecan 
properties and predispose to multilevel disc degeneration 
(13). Other genes such as matrix metalloproteinase-2 
(MMP-2), matrix metalloproteinase-9 (MMP-
9), TIMP metallopeptidase inhibitor-1 (TIMP-1), 
cyclooxygenase-2  (COX-2), and R-spondin-3 (RSPO-3) 
can participate in the pathophysiology of disc disease 
as well (14-16). Additionally, nucleotide variations in 
collagen IX (COL9A3) are linked to persistent obesity 
and can, therefore, affect the production of lumbar 
discs (17). The expression of human high-temperature 
requirement protein-1 (HTRA-1) is increased in arthritis 
and IDD, suggesting a link between HTRA-1 and disease 
progression. HTRA-1 also regulates a broad range of 
physiological processes by its proteolytic activity (18). 
Food ingredients such as vitamins are deemed among the 
environmental factors capable of affecting IDD. Pabalan 
et al demonstrated an association between FokI and ApaI 
polymorphisms in the Vitamin D receptor gene and IDD 
(19). 

IDD is a chronic progression resulting in the structural 
failure of the intervertebral disc, with enhanced signs of 
aging (20). The nucleus pulposus, a central structural 
constituent of the intervertebral disc, consists of the 
extracellular matrix and nucleus pulposus cells (21-25). 
The deregulated function of nucleus pulposus cells and 
extracellular matrix degradation/synthesis can contribute 
to IDD development (26-30). Nevertheless, atypical stimuli 
such as neutrophil proteases can upregulate inflammatory 
cytokines, diminish the steadiness of nucleus pulposus 
cells through MMPs and type II collagen, and accelerate 
IDD (31, 32). 

An emerging approach to IDD molecular mechanism 
exploration is studying different RNA types, including 
noncoding RNAs (ncRNAs). Composing a large family 
of RNAs without a coding function, ncRNAs include 
microRNAs (miRNAs), circular RNAs (circRNAs), 
and long noncoding RNAs (lncRNAs). Microarray and 
sequencing analyses show significant ncRNA differential 
expression patterns between IDD samples and normal 
ones, hence, the probable role of ncRNAs in IDD 
development (33-38).

CircRNAs are newly introduced as regulatory and 
single-stranded ncRNAs with loop structures produced 
by non-canonical back-splicing events (39-43). Some 
circRNAs mediate their function by interacting with 
proteins or obstructing mature messenger RNA (mRNA) 
formation. This type of RNA plays a crucial role in IDD 
pathogenesis. In this regard, the upregulation of circ-4099 
has been shown to inhibit IDD development (44-46). 

In the present study, it was aimed to determine 
differentially expressed circRNAs in IDD through a 

bioinformatics analysis of array profiling data from the 
NCBI Gene Expression Omnibus (GEO) database with a 
view to elucidating the underlying molecular mechanisms 
of IDD. In addition, the environmental and clinical factors 
involved in IDD pathogenesis were reviewed.

Materials and Methods 
Data sets
The data set regarding the circRNA expression profile 
(GSE67566) was downloaded from the GEO database. The 
GSE67566 data set consists of the ncRNA array profiling of 5  
non-degenerative (controls) and 5 degenerative nucleus 
pulposus cells. 

Quality control 
The samples, 10 in total, were divided into non-
degenerative and degenerative groups. All 10 samples 
were subjected to quality control in the R Program using 
the ggplot2 package, which performed the principal 
component analysis and drew box plot curves. 

Differential expression analysis 
The profiles of the differentially expressed circRNAs 
between the normal and degenerative samples were 
investigated using GEO2R for all the data sets. Then, 
a volcano plot was drawn to show the differentially 
expressed circRNAs.

Moreover, circRNAs with a log fold change (logFC) score 
#2.5 and an adjusted P value <0.05 were selected as the 
top differentially expressed circRNAs. A box plot analysis, 
a standard method for displaying data distribution, 
was performed to identify the most upregulated and 
downregulated circRNAs. 

Functional in silico analysis of 2 highly differentially 
expressed circRNAs 
Following the selection of the most upregulated and 
downregulated circRNAs, the IDs of the circRNAs were 
identified by Circ2Disease (http://bioinformatics.zju.edu.
cn/Circ2Disease/circRNAgroup.html), and RNA-binding 
protein sites and miRNA target sites matching each 
circRNA were investigated by CircInteractome (https://
circinteractome.nia.nih.gov/index.html). Subsequently, 
the common miRNA target sites that matched both 
circRNAs were separated by Venny 2.1 (https://bioinfogp.
cnb.csic.es/tools/venny/index.html). In the next stage, the 
target genes of each miRNA were analyzed by TargetScan. 
Afterward, the common target genes were separated by 
Venny 2.1 to study their possible effects on IDD. Finally, 
the signaling pathways of target genes were studied by 
Enrichr (https://maayanlab.cloud/Enrichr/enrich#). 

Environmental and clinical determinants of IDD
PubMed (https://pubmed.ncbi.nlm.nih.gov/) and Google 
Scholar (https://scholar.google.com/) were drawn upon to 

https://pubmed.ncbi.nlm.nih.gov/?term=Pabalan+N&cauthor_id=27797588
http://bioinformatics.zju.edu.cn/Circ2Disease/circRNAgroup.html
http://bioinformatics.zju.edu.cn/Circ2Disease/circRNAgroup.html
https://circinteractome.nia.nih.gov/index.html
https://circinteractome.nia.nih.gov/index.html
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://maayanlab.cloud/Enrichr/enrich#)
https://pubmed.ncbi.nlm.nih.gov/
https://scholar.google.com/
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find all the environmental and clinical factors associated 
with the pathogenesis of IDD. The search identified 50 
articles related to the effects of environmental factors, 
including temperature, heavy metal pollution, lifestyle, 
occupation, prolonged working hours, driving, strenuous 
physical activity and exercise, as well as clinical factors 
including hypertension, smoking, pregnancy, and diabetes 
mellitus. 

Results 
Quality control of the data set
The results of the principal component and box plot 
analyses demonstrated that all the non-degenerative and 
degenerative nucleus pulposus sample cells possessed 
sufficient quality and could be used for further analysis. 
The principal component analysis diagram of the studied 
samples showed that the samples of each group could 
both be individually categorized by themselves and be 
separated correctly according to their group (Figure 1A). 
The box plot analysis revealed that the non-degenerative 
and degenerative samples did not differ significantly 
from each other (Figure 1B), indicating their suitability 
for further expression analysis. The remote data of the 
samples are not shown in Figure 1A-B.

Differential expression of hsa_circRNA_101645 and 
hsa_circRNA_101852 in the degenerative samples
The upshot of the differential expression analysis 
demonstrated that 2893 circRNAs were differentially 
expressed (upregulated or downregulated) 
between the control and degenerative samples 
(Table S1, Supplementary file 1). The results of the 
volcano plot showed that 1187 circRNAs were upregulated 
and 1506 circRNAs were downregulated (Figure 2A). The 
red dots in the plot indicate the upregulated circRNAs, 
the blue dots show the downregulated circRNAs, and the 
black dots show the insignificant circRNAs. 

Among the differentially expressed circRNAs, 25 
circRNAs were upregulated and 14 circRNAs were 

downregulated based on the application of a logFC#2.5 and 
an adjusted P value <0.05 (Table 1). The most upregulated 
and downregulated circRNAs in the degenerative samples 
were circRNA_101645 and hsa_circRNA_101852, 
respectively (Figure 2B).

RNA-binding protein sites and miRNA target sites of 
hsa_circRNA_101645 and hsa_circRNA_101852
The possible function of hsa_circRNA_101645 
(hsa_circ_0036763) and hsa_circRNA_101852 (hsa_
circ_0040039) was analyzed using the CircInteractome 
database. The results showed that AGO2 and EIF4A3 
were RNA-binding protein sites for hsa_circRNA_101645 
and AGO2, while EIF4A3, FMRP, HuR, and IGF2BP2 
were RNA-binding protein sites for hsa_circRNA_101852 
(Table 2). Several miRNA target sites were found for 
each circRNA, with hsa-miR-330-3p, hsa-miR-502-5p, 
hsa-miR-662, hsa-miR-874, and hsa-miR-646 sharing 
target sites on both circRNAs (Table 2). The target 
genes of each miRNA were separated by TargetScan 
(Tables S2–S6, Supplementary file 1). The upshots 
demonstrated that PSD3, SIK2, PCYT1B, ARID5B, 
MTMR3, and HIPK2 were common target genes among 
all 5 mentioned miRNAs. The signaling pathway analysis 
showed the involvement of these genes in phosphonate 
and phosphinate metabolism, glycerophospholipid 
metabolism, autophagy, and cellular senescence in 
cells (Figure 3). Therefore, it seems that the competing 
endogenous mRNAs (ceRNA) regulatory network of 
these circRNAs might be linked to IDD by regulating the 
pathways involved in its progression.

Environmental and clinical determinants of IDD
Numerous studies have reported environmental and 
clinical factors involved in the development of IDD, 
including temperature, heavy metal pollution, driving, 
work schedule, prolonged working hours, strenuous 
physical activity, age, sex, body weight, body mass index 
(BMI), overweight, obesity, pregnancy, diabetes mellitus, 

Figure 1. The results of the quality control data analysis. (A) The principal component analysis graph shows that all the samples in each group were 
separated correctly according to their group. B) The box plot demonstrates that the degenerative and non-degenerative intervertebral disc samples did not 
differ significantly. All the samples were appropriate for further expression analysis.
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Figure 2. (A) The volcano plot for the differentially expressed circular RNAs (circRNAs). The red and blue dots reflect upregulated and downregulated 
circRNAs, respectively, and the black dots represent insignificant circRNAs. (B) In intervertebral disc degeneration samples, the highest differential 
expression was observed in hsa_circRNA_101645 (downregulated) and hsa_circRNA_101852 (upregulated).

Figure 3. The important signaling pathways in which PSD3, SIK2, PCYT1B, ARID5B, MTMR3 and HIPK2 genes are involved.  

hypertension, and smoking (47-49). Still, the reports 
abound with controversy vis-à-vis the precise role of 
environmental and clinical factors in IDD progression. 
Table 3 presents the clinical and environmental 
determinants of IDD reported by various investigations.

A previous study reported an association between lower 
temperatures and increased risks of muscular pain and 
injury, which could be associated with higher occurrence 
rates of IDD (50).

Evidence suggests that heavy metal pollution could 
interfere with bone homeostasis. Indeed, exposure to 
heavy metals promotes degenerative bone diseases 
including degenerative disk disease (51). Earlier studies 
have also reported that cadmium levels are negatively 
correlated with zinc levels in the intervertebral discs 
of patients with degenerative changes. In this group of 
patients, lead levels are positively associated with the 
levels of magnesium, zinc, and aluminum and negatively 
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Table 1. The upregulated and downregulated circular RNAs (circRNAs) 
based on a logFC score #2.5 and an adjusted P-value below 0.05 among 
degenerative and non-degenerative intervertebral disc samples 

CircRNAs Adjusted 
P-value P-value logFC Significance 

hsa_circRNA_101645 1/60E-14 5/49E-16 - 3/300365 Down 

hsa_circRNA_104508 2/19E-13 1/87E-14 -3/255699  Down

hsa_circRNA_102116 1/92E-14 7/37E-16 -3/175986  Down

hsa_circRNA_103838 6/98E-16 1/21E-18 -3/057012  Down

hsa_circRNA_101557 1/96E-14 8/06E-16 -3/048583  Down

hsa_circRNA_101709 1/18E-14 3/40E-16 -3/039137  Down

hsa_circRNA_104630 2/41E-14 1/07E-15 -3/037861  Down

hsa_circRNA_104019 2/04E-13 1/72E-14 -2/974758  Down

hsa_circRNA_101370 1/82E-14 6/52E-16 -2/859529  Down

hsa_circRNA_105031 1/18E-14 3/24E-16 -2/827131  Down

hsa_circRNA_103486 2/84E-15 2/55E-17 -2/826916  Down

hsa_circRNA_101558 1/92E-14 7/77E-16 -2/797888  Down

hsa_circRNA_100427 2/50E-14 1/15E-15 -2/75521  Down

hsa_circRNA_102618 1/92E-14 7/77E-16 -2/719943  Down

hsa_circRNA_103198 2/84E-15 2/52E-17 -2/703984  Down

hsa_circRNA_103139 1/60E-13 1/27E-14 -2/703897  Down

hsa_circRNA_100772 3/39E-15 4/08E-17 -2/687741  Down

hsa_circRNA_102492 1/00E-15 2/42E-18 -2/681225  Down

hsa_circRNA_103634 2/82E-15 2/34E-17 -2/651395  Down

hsa_circRNA_102126 1/77E-13 1/46E-14 -2/639859  Down

hsa_circRNA_104952 2/73E-14 1/29E-15 -2/557336  Down

hsa_circRNA_000943 3/89E-13 3/87E-14 -2/545568  Down

hsa_circRNA_101369 2/12E-10 5/88E-11 -2/513249  Down

hsa_circRNA_103675 7/06E-13 8/01E-14 -2/502746  Down

hsa_circRNA_102367 1/19E-13 8/90E-15 -2/501381  Down

hsa_circRNA_101525 3/03E-15 3/14E-17 2/521327 Up

hsa_circRNA_103801 1/18E-14 3/35E-16 2/542272  Up

hsa_circRNA_000200 2/32E-14 9/78E-16 2/559996  Up

hsa_circRNA_103410 6/98E-16 1/15E-18 2/588725  Up

hsa_circRNA_100018 1/67E-15 6/33E-18 2/613127  Up

hsa_circRNA_100604 1/57E-15 5/42E-18 2/677874  Up

hsa_circRNA_104600 7/51E-15 1/69E-16 2/683763  Up

hsa_circRNA_104703 1/24E-15 3/47E-18 2/718491  Up

hsa_circRNA_102324 1/00E-15 2/18E-18 2/777566  Up

hsa_circRNA_400019 3/87E-14 2/07E-15 2/839063  Up

hsa_circRNA_103890 1/72E-15 8/20E-18 2/862396  Up

hsa_circRNA_101139 6/98E-16 5/39E-19 2/924426  Up

hsa_circRNA_101853 6/98E-16 3/80E-19 2/928536  Up

hsa_circRNA_101852 3/92E-15 5/40E-17 2/980678  Up

Table 2. RNA-binding proteins and microRNAs (miRNAs) with target sites 
on hsa_circRNA_101645 and hsa_circRNA_101852 

circRNA/circRNA 
IDs

RNA-binding 
Proteins miRNAs

hsa_
circRNA_101645/ 
hsa_circ_0036763

AGO2, 
EIF4A3

hsa-miR-1227, hsa-miR-1270
hsa-miR-127-5p, hsa-miR-330-3p
hsa-miR-502-5p, hsa-miR-516a-
5p, hsa-miR-518a-5p, hsa-miR-527
hsa-miR-576-3p, hsa-miR-583
hsa-miR-620, hsa-miR-646
hsa-miR-662, hsa-miR-767-3p
hsa-miR-874, hsa-miR-938
hsa-miR-942

hsa_
circRNA_101852/ 
hsa_circ_0040039

AGO2, 
EIF4A, 
FMRP, HuR
IGF2BP2

hsa-miR-1203, hsa-miR-1248
hsa-miR-136, hsa-miR-146b-3p
hsa-miR-188-3p, hsa-miR-330-3p
hsa-miR-369-5p, hsa-miR-370
hsa-miR-383, hsa-miR-502-5p
hsa-miR-503, hsa-miR-526b
hsa-miR-545, hsa-miR-548p
hsa-miR-574-5p, hsa-miR-626
hsa-miR-637, hsa-miR-638
hsa-miR-646, hsa-miR-648
hsa-miR-662, hsa-miR-665, hsa-
miR-874

associated with molybdenum levels and IDD (48, 49). 
In this regard, a prior study reported that smoking 

at least 4 packs a year was associated with the lumbar 
degenerative disease in men but not in women, even 
though this finding was not statistically significant (52). 
Another study on 83 individuals aged 13 to 20 in southern 

China found that overweight or obesity, based on BMI, 
was associated with IDD, while no significant association 
was found with smoking (53). A study in Japan on 308 
student-athletes and 70 student-non-athletes showed 
that swimming and competitive baseball were associated 
with IDD (54). Evidence suggests that strenuous physical 
activity, heavy work, and smoking could be notable factors 
affecting IDD onset (10, 55). Nonetheless, whereas a 
study conducted in 2008 showed that lifting and smoking 
were associated with disc height (56), Yasuoka et al and 
Samartzis et al reported no association between smoking 
and IDD progression (53, 57).

Obesity and overweight constitute the most studied 
factors associated with IDD, although the results reported 
from different countries are discordant. Investigations 
from the Netherlands, Canada, the United States, and 
Japan have found no association between BMI and disc 
narrowing. In the meantime, some studies on Japanese, 
Finnish, and British individuals have demonstrated an 
association between obesity and IDD, while some other 
investigations on the same populations have reported no 
such relationship (56, 58-78) (Table 3). 

Various age-related studies have demonstrated that the 
severity of IDD increases steadily with age, indicating 
the natural progression of disc degeneration in vivo and 
the role of aging as a significant risk factor for IDD. In 
contrast, some studies from Switzerland, the United 
States, Japan, and the United Kingdom have shown no 
association between age and IDD (63-65, 67-77). 

There is also controversy on the association between 
IDD and different occupations and sports (Table 3) (54, 
55). Studies have demonstrated that occupational lifting 
and leisure time resistance training have moderate 
additional effects on disc degeneration (56, 62). The 
position on the field in American football has also been 
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related to the creation and development of IDD in players 
(78). 

Numerous studies have investigated the effect of 
hypertension on IDD (70, 71). Sun et al found that the 
tissue renin-angiotensin system, a potential mechanism 
for hypertension, might contribute to oxidative stress and 
inflammatory response to IDD. Another study showed 
that age was an incontrovertible risk factor for IDD and 
hypertension (70, 72, 75, 79).

In sum, although research has indicated possible 
associations between IDD development and progression 
and many environmental and clinical factors, none 
of them alone can cause IDD. It appears that IDD 
progression is influenced by several mechanisms including 
environmental, biomechanical (61), inflammatory (66), 
and clinical factors. 

Discussion 
IDD, characterized by the progressive structural failure 
of intervertebral discs, is strongly associated with an 
increased risk for low back pain. Genetic and lifestyle 
factors have been associated with IDD development (11, 
63, 80). The precise molecular mechanisms underlying 
IDD have, however, remained largely indefinable. 

In the present study, deregulated circRNAs in the 
nucleus pulposus cells of IDD samples were identified and 
their probable role in IDD pathogenesis was assessed. The 
results revealed 2 circRNAs, hsa_circRNA_101645 and 
hsa_circRNA_101852, with differential expression levels. 
Of all the circRNAs evaluated, the 2 aforementioned ones 
had the highest involvement in IDD. In the present study, 
the previously postulated environmental and clinical 
determinants of IDD progression were also reviewed 
and it was found that for all the nominated factors, IDD 
development had no uniquely single determinant.

The intervertebral disc contains a gelatinous core 
known as “the nucleus pulposus”, which plays a crucial 
role in maintaining its integrity. Studies have suggested 
that aberrant nucleus pulposus cell function is a key to 
IDD pathogenesis (81-85). More recent research has shed 
light on the involvement of circRNAs in the development 
of IDD (46). Meng et al showed that hsa_circ_0001658 was 
significantly upregulated in the nucleus pulposus tissues 
of patients with IDD, and it inhibited IDD development by 
regulating hsa-miR-181c-5p/FAS (86). Tang et al reported 
that hsa-circ-0040039 had the highest logFC score. They 
also concluded that 2 members of the RAS oncogene 
family, namely RAB1A and RAB1B, and multiple 
coagulation factor deficiency (MCFD2), as the related 
network of hsa-circ-0040039, might play significant roles 
in IDD (87). Wang et al detected significant circ-4099 
expression upregulation in nucleus pulposus cells after 
treatment with tumor necrosis factor alpha (44).

The GEO2R analysis revealed that 25 circRNAs were 
highly differentially expressed in the nucleus pulposus 
cells of patients with IDD, with hsa_circRNA_101645 

Table 3. The list of the environmental and clinical determinants of 
intervertebral disc degeneration (IDD) progression

Clinical or 
environmental 
determinant

Country Reference
Association With 

IDD

No Yes

Temperature - (18, 50) Y

Heavy metals - (48, 49, 51) Y

Age

Switzerland (63) N

USA (53, 63, 64, 
67) N Y

Japan (74, 75) N

Washington  (76) N

UK  (65, 68) N Y

Portugal  (69) Y

Sex

Switzerland  (63) N

USA  (77) N

Washington  (76) N

Japan  (75) Y

Body weight/BMI/
Overweight/Obesity

Canada  (52, 62) N

Switzerland  (63) N

USA  (64) N

UK  (58, 65) N Y

China  (60, 73) N Y

Finland  (61, 77) N Y

Japan  (74, 75, 78) N

Pregnancy Japan  (74) N

Diabetes mellitus Japan  (75) N

Hypertension

Japan  (75) N

China  (70, 72) Y

USA  (71) Y

Back injuries Finland  (77) N

Smoking

Finland  (77) N

Japan  (74, 75) N

Canada  (56, 62) N Y

Car driving

Finland  (77) N

Canada  (62) N

Japan  (62) N

Occupation/Work 
schedule

Finland  (77) N

Japan  (74) N

Switzerland  (63) Y

Weight lifting at 
work Canada  (56) Y

Sports activities Sweden  (10) N

Recreational 
activities at leisure 
time

Canada  (56, 62) N

Resistance training Canada  (56, 62) N Y

Lifting weight
Japan  (75) N

Canada  (56, 62) N Y

American football 
position Japan  (78) Y

American football 
playing career Japan  (78) N

Fast bowling Western 
Australia (79) Y
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and hsa_circRNA_101852 exhibiting the most marked 
difference in expression. These findings are consistent 
with those reported by Lan  et al, who confirmed the 
upregulation of circRNA-101852 and the downregulation 
of circRNA-101645 using real-time quantitative 
polymerase chain reaction (RT-qPCR) and applying the 
Arraystar human array analysis (88). 

The analyses in the present study identified another 
circRNA, hsa_circRNA_100772, which was significantly 
downregulated in IDD samples. Wang et al used qRT–PCR 
and found a significant decline in the expression of hsa_
circRNA_100772 (circBase ID: hsa_circ_0021535, also 
termed “circKIF18A”) in the IDD group compared with 
the control group (89). However, the existing literature 
features no experimental analyses on the other circRNAs 
introduced in the present study. 

Notably, ceRNAs are referred to as “miRNA sponges” 
as they directly bind to miRNAs to counteract post-
transcriptional repression (90, 91). Some circRNAs are 
enriched with miRNA-binding sites and act as ceRNAs 
to interact with miRNAs and regulate the expression 
of mRNA targets (90, 92-95). Cheng et al showed that 
CircVMA21 could improve inflammatory cytokines-
induced nucleus pulposus cell apoptosis and extracellular 
matrix through the miR-200c-XIAP pathway in IDD (96). 
Song et al concluded that circRNA_0000253 could be used 
as a ceRNA to combine with miRNA-141-5p with the aim 
of promoting the secretion of interleukin-1 beta (IL-1β), 
which stimulates oxidative stress response and apoptotic 
protein expression (97). 

In the present study, the functional bioinformatics 
analysis revealed several miRNA target sites harbored in 
both hsa_circRNA_101645 and hsa_circRNA_101852. It 
was found that these circRNAs could act as miRNA sponges 
(hsa-miR-330-3p, hsa-miR-502-5p, hsa-miR-662, hsa-
miR-874, and hsa-miR-646) and affect IDD pathogenesis 
by targeting PSD3, SIK2, PCYT1B, ARID5B, MTMR3, 
and HIPK2. The results of this study demonstrated that 
these genes were involved in various signaling pathways in 
cells such as autophagy and cellular senescence. Previous 
studies have reported the role of autophagy in IDD and 
indicated that the abnormal regulation of autophagy 
levels could be a significant mechanism leading to IDD. 
Moreover, Beclin-1, Atg8, Atg12, Cathepsin B, Presenilin-1, 
and p62 are autophagy-related genes significantly 
upregulated in degenerated disc tissues compared with 
healthy disc tissues (98-101). The findings of the present 
study concerning the involvement of these genes in 
autophagy and cellular senescence are consistent with 
the results of the aforementioned investigations. These 
circRNAs could affect the pathogenesis of IDD by acting 
as sponges and regulating the expression of genes involved 
in autophagy and cellular senescence. This postulation 
needs experimental confirmation. 

In this study, functional in silico analysis identified 
AGO2 as an RNA-binding protein with a target site on 

both hsa_circRNA_101645 and hsa_circRNA_101852. 
Studies have demonstrated that miRNAs can be loaded 
into AGOs to induce the translational inhibition or 
exonucleolytic mRNA decay of specific transcripts. 
In mammals, AGOs have been mainly described for 
their cytoplasmic role in the biogenesis of small RNAs 
(smRNAs), which function as the key components of the 
RNA-induced silencing complex (102, 103). Evidence 
indicates the role of the ceRNA regulatory network of 
these circRNAs in the pathogenesis of IDD (44, 96, 97, 
104). The immunoprecipitation of AGO2 shows that circ-
4099 can sponge miR-616-5p, and the upregulation of circ-
4099 in nucleus pulposus cells could act as a protective 
mechanism against inflammation by modulating the miR-
616-5p-Sox9 pathway (44, 104). These circRNAs might 
regulate miRNA production by harboring the AGO2 
protein, affecting IDD pathogenesis. This theory needs to 
be confirmed by further experiments. 

Although many environmental and clinical factors 
have been nominated as the determinants of IDD 
development and progression, the existing controversy 
precludes their introduction as independent risk factors 
for this degenerative disease. For instance, whereas 
some investigators have confirmed age progression as an 
independent risk factor and a strong predictor of IDD 
(69), others have found no such association (63, 74-76). 

Environmental factors like temperature can affect the 
expression of circRNAs (105, 106). Notably, circRNAs 
are expressed at very low levels, and they accumulate in 
the tissue due to their high stability at room temperature 
(106). Pan et al demonstrated that heat stress could induce 
the expression and accumulation of circRNAs remarkably 
in plant response (105). Nonetheless, no study is available 
on the relationship between the expression levels of 
circRNAs and temperature changes in humans. Given the 
earlier findings in plants, this hypothesis needs further in-
depth research in humans. 

Heavy metals, recognized as environmental pollutants, 
could accumulate in the human body and cause genetic 
damage by inhibiting critical proteins from different 
DNA repair pathways. Consequently, heavy metal 
exposure could lead to human diseases such as IDD (48, 
49, 51, 107). Despite the existing evidence indicating the 
contribution of some heavy metals to IDD progression, 
more experimental investigations are required to elucidate 
the effects of heavy metal exposure on the expression of 
circRNAs and the exact mechanisms thereof. 

Conclusion 
Overall, investigating molecular regulatory pathways 
and novel molecular regulatory markers like circRNAs 
can enhance our understanding of the exact molecular 
mechanisms underlying the emergence and progression 
of IDD. The results of the present study, albeit in need 
of confirmation by experimental analyses, indicate the 
possible role of some circRNAs within a ceRNA regulatory 
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network in IDD pathogenesis. Still, with respect to the 
relationship between IDD and environmental and clinical 
factors, more in-depth population research, not least 
in Iran, is required. Expanding our knowledge of the 
molecular mechanisms underlying IDD pathogenesis will 
confer earlier detection and more effective treatments.
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