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Introduction
Plastic production has played a pivotal role in shaping 
human development over recent decades (1). The 
affordability and versatility of plastic products have 
rendered them indispensable in various facets of human 
life. In 2015, the global production of plastic products 
soared beyond 300 million tons, and this upward 
trajectory continues unabated (2). However, amid the 
myriad benefits that plastic products bestow upon 
human well-being, an escalating array of associated 
risks is becoming increasingly apparent (3). Among the 
most pressing global concerns associated with plastic 
production are microplastics (MPs) (4,5). According to a 
study by Thompson et al. (6), MPs are commonly defined 
as solid artificial particles or insoluble polymer matrices 
in water, exhibiting sizes ranging from 1 micrometer 
to 5 millimeters, with regular or irregular shapes (7). 
These particles can originate as primary products for 
the manufacturing industry or emerge through the 

degradation of plastic materials in various settings, 
including natural conditions like weathering (8), as well 
as artificial conditions such as friction (9) or biological 
processes (10).

The perils associated with MPs have garnered more 
attention in aquatic environments than their terrestrial 
counterparts (11,12). The sheer volume of plastic 
infiltrating aquatic ecosystems is staggering. Research 
conducted by PlasticsEurope (13) reveals that annually, 
over 19 million tons of plastic, out of the total global plastic 
production, enter the world’s oceans. There have also 
been documented cases of these materials contaminating 
polar regions (14). Moreover, numerous studies have 
demonstrated the adverse effects of MPs on resident 
organisms in MP-invaded aquatic ecosystems (15) 
because these materials can easily be ingested through the 
food chain, leading to their accumulation in the bodies 
of aquatic organisms (16). The resulting consequences 
encompass physical harm, biomagnification in various 
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Abstract
Background: Microplastic (MP) pollution significantly threatens aquatic ecosystems in Iran because of 
increasing human activities affecting inland surface freshwater resources. 
Methods: Our study focused on the Choghakhor International Wetland, quantifying the presence 
of MPs on the wetland surface sediment, revealing an average of 87.5 ± 11.5 pieces per kilogram of 
sediment throughout the wetland. We employed the Generalized Additive Model to identify local 
factors influencing the accumulation of MPs, considering various uncorrelated variables, including 
electrical conductivity (EC; average = 570.0 ± 14.0 dS/m), pH (average = 6.98 ± 0.07), organic matter 
(OM; average = 3.51 ± 0.32 %), the Soil Texture Index (STI), Landsat-derived water depth (DEP; 
R² = 0.659), and substrate slope (SLO). 
Results: The results of the GAM model (R2 = 0.750; Deviance explained = 79.1%) revealed that sediments 
with finer particles enriched with elevated OC and EC content on flat substrates within the wetland are 
more susceptible to the accumulation of MPs.
Conclusion: These findings underscore the substantial role of sediment attributes, and to a lesser extent, 
substrate physical characteristics in shaping the dynamics of MP pollution in the Choghakor Wetland.
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tissues, the induction of inflammatory responses, and a 
reduction in metabolic processes (17,18). Furthermore, 
these substances can disrupt the growth of marine 
vegetation and present challenges to the carbon and 
nitrogen cycles within aquatic ecosystems (19).

Many factors affect the distribution of MPs in 
aquatic environments such as wetlands, including both 
environmental and anthropogenic factors. Wetlands 
located near urban and industrial areas are more 
likely to receive inputs of MPs from sources such as 
stormwater runoff, wastewater effluent, and industrial 
discharges (20). Moreover, MP distribution depends on 
the hydrodynamics of the landscape. Factors such as the 
flow of rivers or streams reaching a water body and wind-
driven currents can affect the transport and distribution 
of MPs within wetlands (21-23). Among the physical 
characteristics of aquatic bodies, Kaiser, Estelmann (24), 
and Ryan, Suaria (25) revealed that the concentration 
of MPs decreases significantly with water depth, and 
sediments of shallow waters might be more polluted with 
MPs. Falahudin, Cordova (26) reported that sediment 
characteristics are more potent factors than edaphic 
factors (e.g., depth) in explaining the concentration of 
MPs. There are also studies showing that the type and 
composition of sediment in wetlands can impact the 
accumulation and distribution of MPs. For example, Maes 
and Van der Meulen (27) found a positive relationship 
between the abundance of MPs at the water surface and in 
sediments of the North-East Atlantic and the amount of 
organic carbon (OC). The differences in the importance 
of various physical and chemical variables in determining 
the abundance of microplastics highlight the intricate 
nature of aquatic environments and the need to determine 
the factors that are more important in a given region for 
outlining management and conservation plans.

In Iran, inland bodies are facing the significant 
impacts of urban development, industrial expansion, 
and increased tourism activities (28). One of the primary 
concerns in these ecosystems is the growing problem of 
water pollution (29). In this case, the rising concentration 
of MPs has become a noticeable issue due to reports 
highlighting their adverse effects. A prime example of this 
situation can be found in the Choghakhor International 
Wetland in Iran. This wetland is known for hosting a 
diverse range of migratory birds and endangered endemic 
species (30). However, the increasing development of 
ecotourism villages and villas has attracted a growing 
number of visitors to the wetlands, showing the potential 
to introduce MPs into the ecosystem. Furthermore, the 
wetland is surrounded by intensive agricultural activities, 
which could release MPs into the streams that flow into 
the wetland. To provide essential information necessary 
for controlling microplastic pollution and evaluating its 
ecological risks in the region, this study investigated the 
factors influencing the deposition of MPs in the sediments 

of the wetland. These factors were categorized into edaphic 
and sediment characteristics, and their associations were 
assessed using a non-linear regression model.

Materials and Methods
Study area
Zagros, a topographically intricate mountain range in 
southwestern Iran, creates diverse terrains that foster 
the development of wetlands. Choghakhor stands out as 
one of the most significant wetlands within this region, 
earning its status as a designated Ramsar International 
Wetland. Its geographical coordinates span from 31° 54’ 
32” N to 31° 56’ 32” N latitude and 50° 53’ 58” E to 50° 56’ 
09” E longitude. The wetland has a surface area of 14.53 
square kilometers and an average depth of 4.5 meters. 
The area surrounding the wetland receives an annual 
average precipitation of 380 mm. During the coldest 
winter months, the water temperature can drop below 
2°C, while it rises to an average of 23°C during the warm 
summer months (31). Following the construction of a 
dam at the wetland’s outlet in 1992, the region witnessed 
a significant expansion in agricultural lands, as well as the 
development of municipal and tourism infrastructure, 
owing to the consistent availability of freshwater stored 
behind the dam. The Choghakhor International Wetland 
serves as a crucial habitat, boasting a rich diversity of 
fauna and flora. It provides sanctuary to over 40 bird 
species, both migratory and resident, including those of 
conservation concern such as the endangered White-
headed Duck (Oxyura leucocephala) and the vulnerable 
Eastern Imperial Eagle (Aquila heliaca) (32). Notably, 
the Zagros tooth-carp (Aphanius vladykovi Coad, 1988; 
family Cyprinodontidae) is an endemic and endangered 
fish species residing in the wetland’s littoral zone, facing 
habitat degradation and a decline in population in recent 
years (33). Figure 1 shows the location of the Choghakhor 
International Wetland in Iran. 

Sample collection and microplastic counting
The underlying terrain of the wetland is completely 
hidden beneath dense submerged vegetation, primarily 
composed of Ceratophyllum and Myriophyllum. This 
makes it extremely challenging to effectively use Grab 
samplers. Instead, a lengthy PVC pipe, measuring over 5 
m in length and with a diameter of 20 cm, was vertically 
inserted into the water to extract sediment from the 
substrate using a suction mechanism. The samples were 
collected using a small, lightweight boat during early 
spring 2022 from the underlying bed at 10 monitoring 
sites, with three replications, as shown in Figure 1. 
Subsequently, the samples were stored at a temperature 
of 4°C until analysis.

The sediment samples were subjected to a drying 
process in an oven at 60°C for 48 h, followed by sieving. 
The digestion process involved the periodic addition 
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of 30% w/v hydrogen peroxide (H2O2) for 24 h until all 
natural organic matter was completely broken down. 
To adjust the solution density, a cost-effective and non-
toxic method known as salinity-based density separation 
was employed to facilitate the flotation of low-density 
MPs. Two separate density separation processes were 
conducted, each lasting 24 h, as described by Besley and 
Vijver (34). After the initial 24-h separation, the upper 
aqueous phase was separated for subsequent treatment, 
while the remaining precipitated solids underwent the 
second-density separation using a saturated NaCl solution. 
The upper liquid layer obtained from the second round of 
density separation was combined with the layer obtained 
from the first density separation. This combined solution 
was then filtered using Whatman filter paper grade 42, 
and the filtrate was air-dried in the shade for further 
analysis, following the approach outlined by Eerkes-
Medrano, Thompson, and Aldridge (35). Subsequently, 
all the particles that remained on the filters were visually 
examined and tested using a hot needle because of their 
melting or shrinking behavior when heated (36) under a 
standard light microscope with a magnification of × 100. 
To prevent contamination, equipment was triple-rinsed 
with distilled water, sealed with aluminum foil, and used 
with cotton lab coats, glass containers, and gloves. Work 
surfaces were continuously cleaned with alcohol, windows 
were kept closed, and control samples were examined. No 
microplastics were found in controls.

Preparation of explanatory variables
The explanatory variables were categorized into two 
groups: aquascape and sediment characteristics. Sediment 
characteristics included the following factors: Electrical 
Conductivity (EC-dS m⁻¹), pH, Organic Matter (OM - 
%), and the Soil Texture Index (STI). EC and pH values 
were measured using a calibrated portable device. 
OM was determined based on the volume of ferrous 
ammonium sulfate solution required to react with the 

excess potassium dichromate, as first described by 
Walkley and Black (37). The grain size distribution was 
measured using the Bouyoucos method, which relies on 
density measurements during soil sedimentation (38). 
The resulting percentages of clay, silt, and sand, classified 
according to the United States Department of Agriculture 
(USDA) textural classification system, were used to 
calculate the STI index (39).

Water depth (DEP) and substrate slope (SLO) were 
considered as aquascape characteristics to predict the 
abundance of sedimentary MPs. Since depth data was 
unavailable, it was created in this study. To achieve 
this, a Landsat-8 Operational Land Imager (OLI) image 
captured around the time of the field survey on May 28, 
2022 (LC91640382022148LGN01) was downloaded from 
the GloVis website (https://glovis.usgs.gov/) at the Tier 1 
level. The multiband logarithmic linear (Lyzenga) model, 
as described by Cheng, Ma, and Zhang (40), was utilized 
to generate the water depth layer. This method assumes 
a log-linear relationship between reflectance and water 
depth, following the principles of the Beer-Lambert Law 
of Absorption (41). For this method, we assumed that the 
bottom albedo is uniform across the wetland substrate, 
with the depth of water measured at the sampling stations 
serving as reference points. The substrate slope was also 
measured using the validated depth layers in the GIS 
environment. In the modeling phase, we calculated the 
average DEP and SLO values within 2.5 ha circular buffers 
drawn around each station.

Statistical analysis and modeling 
The relationship between the abundance of MPs and 
their selected predicting variables was estimated using the 
Generalized Additive Model (GAM). GAM is a powerful 
and flexible class of statistical models used for regression 
and smoothing of non-linear relationships between 
predictors and a response variable. It extends traditional 
linear models by allowing for the incorporation of smooth 

Figure 1. Maximum spatial coverage of the surface water of the Choghakhor International Wetland in Charmahal Bakhtiar Province and location of sediment 
sampling stations

https://glovis.usgs.gov/
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functions of predictor variables, which can capture 
complex non-linear relationships (42). The model was 
executed in the R programming language using the mgcv 
package (43). Like linear models, GAM assumes that the 
relationship between the dependent and independent 
variables is additive but measures it non-linearly using 
smooth functions, usually splines, which aim to find the 
best-fitting non-linear curve among the variables. The 
best smoothing functions were automatically selected 
using the Restricted Maximum Likelihood (REML) 
method. The model’s performance was evaluated using 
the coefficient of determination (R²) and the percentage 
of explained deviance.

Results
The mean concentration (item/ 100 ml water sample) 
of MPs counted at each station is presented in 
Figure 2. Stations S3 and S10 exhibited the highest mean 
concentration of MPs (123 MPs/kg sediment). The lowest 
amount of MPs was found at S2 (57.0 ± 4.6 MPs/kg 
sediment), followed by S1 (59.0 ± 7.8 MPs/kg sediment) 
and S4 (60.1 ± 10.4 MPs/kg sediment). On average, the 
mean concentration of MPs at the study stations was 
87.5 ± 11.5 MPs/kg sediment. 

The texture of the sediments was predominantly loamy, 
including clay loam in S2-4, sandy clay loam in S1 and S5-
7, and sandy loam in S8-10 (Table 1). The percentage of 
OC varied between 2.63% (in S2) and 4.33% (in S7) with 
an average of 3.51 ± 0.32%. The minimum and maximum 
values of EC were observed in S1 (542.3 ± 20.4 dS/m) 
and S3 (570.0 ± 14.0 dS/m). On average, the EC of the 
wetland sediment was 549.6 ± 16.2 dS/m. The acidity of 
the samples was nearly neutral, with an average value of 
6.98 ± 0.07.

The water depth layer of the Lyzenga model achieved 
acceptable accuracy, with an R² value of 0.659 (Figure 3). 
As depicted in Figure 1, the wetland exhibits a highly 
variable depth profile, ranging from 0 m at the wetland 
border to small, deep patches of nearly 7 m in the north 
of the wetland. In the central part of the wetland, a hard 
upland exists, prohibiting the well-mixing of water 
entering the wetland from nearby streams. The majority of 
the wetland substrate has a minimal slope, with occasional 
increases to more than 20% in patchy locations, especially 

in the central zone of the wetland. 
None of the explanatory variables was statistically 

correlated with each other. All of the correlation 
coefficients ranged between -0.16 (between STI and DEP) 
and 0.23 (between DEP and SLO, as well as DEP and OC) 
(Table 2).

The GAM model satisfactorily identified associations 
between the abundance of MPs and wetland 
characteristics, achieving an R² of 0.750, which explained 
over 79% of the variance (Table 3). Furthermore, the 
model intercept was statistically significant (t = 33.900; 
Pr( > |t|) < 2e-16), yielding an Estimate value of 87.47. 
Among the entered variables, STI was found to be the most 
significant variable (F = 7.087, P = 0.003), influencing the 
abundance of MPs in the wetland sediment. As illustrated 
in Figure 4, the abundance of MPs increases with higher 
STI values, indicating a smaller sediment grain size. Both 
EC (F = 4.716, P = 0.012) and OC (F = 4.399, P = 0.047) 
exhibited a similar level of significance and showed a 
linear association with the abundance of MPs, as both 
edf and Ref.df values were equal to 1.000 (Table 3); this 
relationship is linearly depicted in Figure 4. 

The effect of SLO was marginally significant with a P 
value of 0.064. However, two variables of water depth 
and pH showed no significant linear or non-linear 
associations with the abundance of MPs. The comparison 
between the measured and predicted abundance of MPs, 
as determined using the GAM model, is presented in 
Figure 5. 

Discussion
Abundance of MPs in the sediment of Choghakor 
Wetland
Microplastic pollution is becoming a severe challenge in 
the Choghakhor International Wetland, endangering the 
survival of all its species and disrupting the connected 
food web. Our results showed an average MP abundance 
of 87.5 ± 11.5 pieces/kg in the wetland sediment, which is 
higher than that found in the sediments of some Iranian 
water bodies, such as the coast of the Persian Gulf (57.19 
pieces/kg- Bahrehmand, Tabatabaie (44)). Although 
the Anzali wetland in northern Iran remains the most 
MP-polluted inland wetland in the country (362 pieces/
kg- Birami, Keshavarzi (45)), the escalating intensity of 
human population and ecotouristic activities around 
Choghakor are ominous signs that could imperil the 
future of this ecosystem. We also observed significant 
variation in the MP abundance among different stations 
within the wetland, suggesting that the pollution is not 
evenly distributed, with some areas being more affected 
than others. This finding is consistent with the results 
from previous studies, such as Zhu et al. (46) and Tian 
et al. (47), indicating that PM sedimentation in aquatic 
environments is significantly influenced by local factors, 
including OC.Figure 2. Concentration (item/100 ml water sample) of MPs measured at 

the sampling locations in the Choghakhor International Wetland
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The role of local factors in the sedimentation of MPs in 
Choghakor Wetland
This study demonstrates the effectiveness of the GAM 
model in identifying significant associations between the 
abundance of MPs and various wetland characteristics. 
Among the variables, sediment texture (STI) emerged as 
the most important factor influencing the abundance of 
MPs. According to the results, finer sediment particles are 
more effective in the sedimentation of MPs. This may be 
related to the larger surface area of these particles relative 
to their volume, as compared to coarser particles like sand 
and gravel, which provides more opportunities for MPs 
to adhere to the sediment due to physical and chemical 

interactions. Furthermore, as discussed by Mendrik et al. 
(48), smaller sediment particles tend to have lower settling 
velocities, giving buoyant MPs more opportunities to 
come into contact with fine sediments and eventually 
settle and become trapped. This mechanism is not only 
applicable within the water component of the wetland 
but can also occur during the transportation of MPs from 
touristic villages and villas, underscoring the significant 
role of human activities in MP pollution of the wetland.

The accumulation of MPs in wetland sediment was 
associated with higher OC and EC levels. This connection 
aligns with the findings of previous studies; for instance, 
Ling et al. (49) reported a positive and significant 

Table 1. Statistics of the sediment physicochemical characteristics

Station
OC EC pH

Soil texture
Mean Stdev Mean Stdev Mean Stdev

S1 3.10 0.35 542.33 20.40 7.00 0.00 Sandy-clay-loam

S2 2.63 0.40 542.67 18.50 6.93 0.06 Clay-loam

S3 3.83 0.15 570.00 14.00 6.93 0.12 Clay-loam

S4 3.50 0.44 542.67 20.23 7.00 0.00 Clay-loam

S5 3.00 0.95 545.00 16.09 6.90 0.10 Sandy-clay-loam

S6 3.77 0.38 551.00 12.49 6.87 0.06 Sandy-clay-loam

S7 4.33 0.23 546.00 21.70 7.03 0.15 Sandy-clay-loam

S8 3.43 0.12 550.33 10.41 7.03 0.06 Sandy -loam

S9 3.70 0.10 547.67 16.50 7.10 0.10 Sandy -loam

S10 3.77 0.12 558.67 12.06 6.97 0.06 Sandy -loam

The water depth layer of the Lyzenga model achieved acceptable accuracy, with an R² value of 0.659 (Figure 3). As depicted in Figure 1, the wetland exhibits 
a highly variable depth profile, ranging from 0 m at the wetland border to small, deep patches of nearly 7 m in the north of the wetland. In the central part of 
the wetland, a hard upland exists, prohibiting the well-mixing of water entering the wetland from nearby streams. The majority of the wetland substrate has a 
minimal slope, with occasional increases to more than 20% in patchy locations, especially in the central zone of the wetland. 

Figure 3. Water depth layer, its validity, and the resulting substrate slope measured from Landsat 8- OLI data
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relationship between MPs and OC in sediment. Enders et 
al. (50) also found that this association is strong in high-
dynamic estuarine environments. This association can 
be attributed to various mechanisms. Firstly, the higher 
OC and EC content within sediment can influence the 
structure and stability of sediment particles, particularly 
in organic-rich sediments, leading to reduced sediment 
mobility. This cohesiveness enhances the trapping and 
retention of MPs within the sediment matrix. Moreover, 
the altered electrostatic properties of sediment particles 
under high EC conditions make them more attractive 
to MPs, facilitating the binding of MPs to the sediment 
and preventing their resuspension in the water column. 
Secondly, OC can form complexes with MPs, amplifying 
the retention and immobilization of MPs within the 
sediment matrix. It also creates favorable environments 
for hydrophobic interactions, increasing the likelihood of 
MPs being retained within the sediment.

The results indicate a very low significant relationship 
between increasing MP accumulation and a decreasing 
slope of the substrate, implying that flatter or less sloped 
substrates tend to collect more MPs. This trend can be 
attributed to the low-turbulence nature of flat substrates, 
which act as natural sediment traps, capturing not only 
natural sediment but also MPs. Moreover, our findings 
reveal that MPs do not exhibit a preferential accumulation 
pattern within specific depth zones, possibly due to the even 
distribution of depth across the majority of the wetland. 
Similarly, the lack of a significant influence of pH on MP 
accumulation can be ascribed to the uniform acidity of 
the wetland water, which maintains a near-neutral pH 

level of 7. In summary, the results obtained in this study 
underscore the significant role of sediment characteristics, 
and to a lesser extent, substrate characteristics in shaping 
the dynamics of MP pollution in Choghakor Wetland. 
Consequently, sediments with a higher density enriched 
with elevated OC and EC contents on flat substrates of the 
wetland are more susceptible to the accumulation of MPs. 

The results are specific to Choghakhor, but they 
provide a strong foundation for understanding how 
local factors influence MP accumulation. Moreover, 
various other factors might affect the sedimentary 
accumulation of MPs in the wetland, whose contribution 
could further explain the variations in PM pollution. 
Furthermore, other characteristics of MPs, such as their 
type and size, play a critical role in their deposition 
and mobilization. The water profile of the wetland also 
undergoes significant temporal variations, which can 
impact MP pollution in both the wetland water and its 
sediment. Therefore, a comprehensive investigation of 
MP type and size, along with the inclusion of a larger set 
of explanatory variables, particularly those affecting the 
pollution and transportation of sediments from upstream 
areas, is suggested to strengthen the results. Long-term 
monitoring and continued research are essential to gain 
a deeper understanding of the complex dynamics of MP 
pollution in the Choghakor Wetland and to develop more 
effective management and mitigation strategies.

Table 2. Correlation coefficients between the variables used to predict the 
abundance of MP in Choghakhor International Wetland

OC

-0.02 EC

0.13 -0.09 pH

0.12 0.02 0.08 STI

0.23 0.16 0.13 -0.19 DEP

0.14 -0.03 -0.04 0.17 0.23 SLO

Table 3. Approximate significance of smooth terms used to predict MPs’ 
abundance based on the Generalized Additive Model

Variable
Model parameters

edf Ref.df F P value

s(OC) 1.000 1.000 4.399 0.047 *

s(EC) 1.000 1.000 7.416 0.012 *

s(pH) 1.002 1.005 0.211 0.654

s(STI) 1.696 1.908 7.087 0.003 **

s(DEP) 1.530 1.778 0.786 0.533

s(SLO) 1.749 1.937 2.685 0.064

Estimate of intercept = 87.47; t = 33.900; Pr( > |t|) = < 2e-16 ***
R2 = 0.750 Deviance explained = 79.1 %
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 4. Smooth fitting curves of the GAM model. Gray zones show the 
limits of the confidence intervals of the fitting additive functions

Figure 5. Predicted vs. measured plot of the abundance of MPs estimated 
using the Generalized Additive Model
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Conclusion
This study has illuminated the growing issue of MP 
pollution in the Choghakhor International Wetland. 
The results indicate a significant presence of MPs in the 
wetland sediment, underscoring the immediate need 
for attention and action to protect the ecosystem from 
further deterioration. The study has emphasized the 
significance of sediment texture, organic carbon, and 
electrical conductivity in shaping the distribution of MPs 
in the wetland sediment. Fine sediment particles and 
elevated levels of OC and EC enhance the retention and 
immobilization of MPs, making these factors crucial in 
influencing MP accumulation. Additionally, the gentle 
slope of the substrate and the uniform pH and depth 
of the wetland water were found to be insignificant in 
the distribution of MPs. Despite the invaluable results 
from this study, future research should consider the 
type and size of MPs and incorporate a more extensive 
set of explanatory variables. Long-term monitoring and 
continued research efforts are instrumental in developing 
effective management and mitigation strategies to 
safeguard the Choghakor Wetland’s fragile ecosystem and 
its species.
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