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Introduction
Air pollution remains a critical global public health issue. 
According to the World Health Organization (WHO, 
2021), 99% of the global population lived in areas where 
air quality did not meet WHO guidelines in 2019 (1). 
Numerous studies have established a strong link between 
air pollution and adverse health effects, including 
increased rates of respiratory and cardiovascular diseases 
and higher mortality associated with pollutant exposure. 
The WHO reports that air pollution is a significant 
contributor to deaths from cancer, lower respiratory 
infections, stroke, ischemic heart disease, and chronic 
obstructive pulmonary disease, highlighting the urgent 
need for effective preventive measures (2-6). 

Mashhad, the second-largest city in Iran, faces severe 

air pollution challenges. Contributing factors include its 
large population, extensive motor vehicle fleet, numerous 
industrial centers, pilgrimage and tourism, and unique 
climatic conditions, making it one of the most polluted 
cities in the country. Despite the critical need to address 
air pollution in Mashhad, research in this area is limited. 
Existing studies often fail to account simultaneously for 
meteorological variables and air pollution, and they do 
not adequately explore the delayed effects of pollutants on 
mortality.

Recent epidemiological research has utilized advanced 
analytical methods, such as generalized additive models 
(GAMs), to analyze time series data and identify 
associations between air pollution and health outcomes, 
including increased mortality rates, morbidity, hospital 
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Abstract
Background: Air pollution is a major public health concern associated with increased respiratory and 
cardiovascular mortality. This study investigates the effects of air pollution and meteorological factors 
on respiratory, cardiovascular, and all-cause mortality in Mashhad, Iran, using generalized additive 
models with cumulative lag structures.
Methods: Daily mortality data from February 18, 2017, to March 19, 2020, were classified by cause. Air 
pollutants (PM10, PM2.5, NO2, SO2, and CO) and meteorological data (temperature and humidity) were 
analyzed using quasi-Poisson GAMs, adjusting for temporal trends, weather, and day of the week. Lag 
effects (0–10, 0–20, and 0–30 days) were assessed for pollutant impacts on mortality. 
Results: Higher PM2.5, PM10, and NO2 levels were significantly associated with increased risks of all-cause, 
respiratory, and cardiovascular mortality. A 10-unit increase in PM2.5 was associated with the highest 
risk for all-cause mortality at Lag 0–30 (RR = 1.184, P = 0.012). PM2.5 and NO2 showed the strongest 
associations with respiratory mortality over 30-day cumulative exposure, while PM2.5 (RR = 1.132, 95% 
CI: 1.012–1.267) and NO2 (RR = 1.074, 95% CI: 1.006–1.147) also impacted cardiovascular deaths. 
Shorter lags revealed more immediate impacts, particularly for NO2 and PM2.5 on all-cause mortality. 
Conclusion: These findings underscore the urgent need for strategies to reduce air pollution in Mashhad, 
addressing both short- and long-term health effects, particularly respiratory and cardiovascular 
outcomes. The results support policy interventions for improved air quality management in urban Iran.
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admissions, and outpatient visits. GAMs allow for the 
simultaneous analysis of linear and non-linear variables, 
offering a more comprehensive understanding of 
ecological processes. For instance, GAMs have been 
employed to link PM10 with hospital admissions for 
chronic obstructive pulmonary disease and pneumonia 
(7) and to correlate elevated ozone concentrations with 
increased respiratory disease admissions (8). In Asian 
cities, GAMs have shown significant associations between 
air pollutants and respiratory hospital admissions (9) 
and increased hospitalization risks for respiratory 
diseases linked to PM10 and NO2 among children (10). 
Additionally, studies in Seoul and Tehran (11,12) and 
in Indian cities such as Delhi and Chennai (13-15) have 
demonstrated the utility of GAMs in elucidating complex 
relationships between air pollution and health.

This study aims to address research gaps by examining 
the simultaneous effects of meteorological variables 
and air pollution on respiratory, cardiovascular, and 
overall mortality in Mashhad. By employing GAMs and 
considering the delayed effects of pollutants, the research 
seeks to provide valuable insights for public health 
officials and policymakers, supporting the development 
of more effective strategies to mitigate the health impacts 
of air pollution and guiding future research in this field.

Materials and methods
Mortality, air pollution, and meteorological data
The Mashhad district of Khorasan Razavi was chosen as 
the research site due to its status as one of Iran’s most 
polluted cities, attributed to the high density of industrial 
facilities and heavy urban traffic. The substandard air 
quality in Mashhad poses significant risks to residents’ 
health. Daily mortality data, covering February 18, 
2017, to March 19, 2020, were obtained from the death 
registration system of the Deputy of Health. Fatalities 
were classified using the 10th edition of the International 
Statistical Classification of Diseases (ICD-10), including 
overall mortality (A00-R99), circulatory disease-related 
mortality (I00-I99), and respiratory disease-related 
mortality (J00-J99).

Key ambient air pollutants—particulate matter (PM), 
sulfur dioxide (SO2), nitrogen oxides (NO2), ozone (O3), 
and carbon monoxide (CO)—were examined for their 
health impacts. Hourly concentration data for NO2, 
SO2, CO, PM10, and PM2.5 were systematically collected 
from February 18, 2017, to March 19, 2020, across 11 
monitoring stations in Mashhad, and average daily 
pollutant levels were used for analysis.

Temperature and relative humidity, identified as 
potential confounding variables, were sourced from 
Mashhad Meteorological Organization, and their daily 
averages were incorporated into the analytical framework. 
All datasets used in this study were complete, ensuring the 
reliability of the analysis.

Statistical analysis
Descriptive statistics, including the mean, standard 
deviation, 25th, 50th (median), 75th, and 98th percentiles, 
and minimum and maximum values, were calculated for 
air pollutants, meteorological variables, and mortality 
counts. Seasonal variations were visualized using box 
plots for four major air pollutants (PM10, PM2.5, CO, 
and NO2), two meteorological variables (temperature 
and relative humidity), and total mortality across the 
four seasons (winter, spring, summer, and autumn). 
We calculated Pearson correlation coefficients between 
daily air pollutant concentrations and meteorological 
parameters to assess potential multicollinearity and 
identify relationships among variables. Correlations were 
interpreted using a significance level of P < 0.01. 

The relationship between daily mortality and air 
pollution was assessed using quasi-Poisson regression 
models within overdispersed generalized additive models 
(GAMs). Quasi-Poisson distribution was used to account 
for overdispersion in the mortality count data where the 
variance exceeded the mean. GAMs extend generalized 
linear models by accommodating both linear and non-
linear associations between the response variable and 
its predictors (16,17). This approach allows for greater 
flexibility, as GAMs describe the response variable 
through smooth functions rather than relying solely on 
fixed parametric relationships with the covariates (18). To 
control for potential confounding effects, non-parametric 
smoothing splines were applied in the model. We used 
10 degrees of freedom for calendar time to account for 
long-term trends and seasonality, 3 degrees of freedom 
for mean temperature, and 1 degree of freedom for mean 
relative humidity. Degrees of freedom for the natural 
spline functions were selected based on the lowest Akaike 
information criterion (AIC). The day of the week (DOW) 
was included as a categorical variable to adjust for weekday 
effects. The final model was formulated as follows:

( ) ( )
( ) ( )

1

2 3

     ,

 , ,    
i iLog E Y X ns time df

ns temperature df s humidity df DOW

α β  = + × + + 
+ +

In this model, α represents the intercept, E(Yᵢ) 
represents the expected number of daily mortalities, β 
denotes the regression coefficient, and Xᵢ refers to the 
daily mean concentration of pollutants. The term ns  
signifies the natural cubic splines used to account for non-
linear relationships. After adjusting for the confounding 
effects of temperature, time, and relative humidity, daily 
concentrations of pollutants such as PM2.5, PM10, NO2, 
SO2, and CO were incorporated into the base model. 
Following the estimation of β , we calculated the relative 
risk (RR) and the 95% confidence interval (CI) as follows:

( )RR exp β=
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( )95% CI exp 1.96 SEβ= ±

Given the delayed and lingering effects of air pollution 
(19), we examined cumulative exposure effects by 
constructing moving average lag structures over 0–10, 
0–20, and 0–30 days. This approach involved averaging 
pollutant concentrations across the specified lag periods 
to capture the total exposure burden. Statistical analyses 
were performed using the “mgcv” and “splines” packages 
in R software (version 4.0.2).

Results
During the 3-year study period (1126 days), a total of 
45,686 deaths occurred in Mashhad, including 17,239 
cardiovascular and 6,579 respiratory deaths. The deaths 
were distributed across seasons as follows: 10,617 in 
spring, 10,480 in summer, 11,932 in autumn, and 12,657 
in winter. The frequency of deaths from 2017 to 2020 is 
detailed in Table 1. 

The means, standard deviations, ranges, and percentiles 
of the daily air pollution, meteorological data, and death 
counts are shown in Table 2. The study found that the 
daily average concentrations of PM2.5 and PM10 were 29.19 
μg/m³ and 45.84 μg/m³, respectively, exceeding the WHO 
2021 annual thresholds of 15 μg/m³ for PM2.5 and 45 μg/
m³ for PM10. In contrast, the daily average concentrations 
of CO and SO2 were below the WHO thresholds. The 
mean relative humidity (RH) value of 46.60% in Mashhad 
aligns with the optimal RH range for health and comfort, 
which is between 30% and 50%. The three-year average 
temperature of 16.19 ± 9.5 shows a mild temperature. The 
analysis of the death data reveals significant variability in 
the number of cardiovascular, respiratory, and all-cause 
deaths over the study period. The all-cause death count 
exhibited a mean of 40.57 with substantial variability 

(SD = 8.27). Cardiovascular deaths had a mean of 15.31, 
while respiratory deaths displayed the lower mean of 5.84.

A strong positive correlation was observed between PM2.5 
and PM10 (r = 0.980). PM10 also exhibited notable positive 
correlations with SO2 (r = 0.118) and NO2 (r = 0.302). 
Similarly, PM2.5 showed positive correlations with SO2 
(r = 0.132) and NO2 (r = 0.340). CO was weakly negatively 
correlated with PM2.5 (r = −0.092) and PM10 (r = −0.051). 
Among meteorological variables, SO2 had a moderate 
negative correlation with temperature (r = −0.387) 
and a weak positive correlation with relative humidity 
(r = 0.072). PM10, PM2.5, and NO2 generally showed weak 
negative correlations with relative humidity, indicating 
that as these pollutants increase, relative humidity might 
decrease slightly (Table 3).

Figure 1 shows the box plot of some pollutants and 
mortalities. According to the plots, spring and fall are the 
seasons with the highest variability and pollution levels, 
particularly for PM2.5, PM10, and CO. These seasons also 
correlate with higher median respiratory and heart-related 
mortality. Summer tends to have the lowest pollution 
levels and associated mortality rates, while winter shows 
more consistent environmental conditions but slightly 
elevated mortality rates.

The general fit of the base GAM model is illustrated in 
Figure 2. The residuals follow a normal distribution and 
appear randomly dispersed without a discernible pattern. 
Additionally, the response aligns closely with the fitted 
values, indicating that the model is likely performing well.

The results of the multi-pollutant generalized additive 
model (GAM) analysis, which included PM2.5, PM10, 
NO2, SO2, and CO as predictors over cumulative lag 
periods of 0–10, 0–20, and 0–30 days, are presented in 
Tables 4-6. According to Table 4, a 10-unit increase in 
PM2.5 is associated with a statistically significant increase 

Table 1. Frequency of respiratory death, cardiovascular death, and all-cause death from 2017 to 2022

Cause of death 2017 (n = 317) 2018 (n = 365) 2019 (n = 365) 2020 (n = 79)

Respiratory death 4803 5701 5528 1207

Cardiovascular death 1534 2313 2224 508

All-cause death 12679 15183 14738 3086

Table 2. Descriptive statistics of daily air pollution, meteorological data, and mortality

variable Mean SD Min 25% 50% 75% Max.

PM2.5 29.19 15.99 4.75 19.23 26.56 35.21 213.03

PM10 45.84 22.93 8.83 31.88 42.14 53.83 311.50

SO2 10.40 8.83 1.25 4.93 7.81 12.66 96.33

NO2 52.86 15.2 22.17 42.64 50.67 61.13 157.04

CO 1.77 0.82 0.24 1.06 1.65 2.39 5.78

Temperature 16.19 9.5 −6.66 7.82 15.71 24.83 34.35

Cardio. death 15.31 4.67 5 12 15 18 32

Resp. death 5.84 2.94 0 4 6 8 18

All-cause death 40.57 8.27 19 35 40 45 75
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in all-cause mortality across all lag periods, with the 
highest relative risk (RR) observed at Lag 0-30 (RR = 1.184, 
P = 0.012). Conversely, PM10 is associated with a statistically 
significant decrease in all-cause mortality across all lag 
periods, with the lowest relative risk observed at Lag 0–30 
(RR = 0.893, P = 0.014). The relationship between SO2 and 
all-cause mortality shows an increasing trend over time, 
reaching statistical significance at Lag 0–30 (RR = 1.066, 
P = 0.024). NO2 is significantly associated with increased 
mortality at Lag 0–10 (RR = 1.025, P = 0.027), but this 
association is not statistically significant at Lag 0-20 or Lag 
0–30. A 1-unit increase in CO is consistently associated 
with a significant reduction in all-cause mortality across 
all lag periods, with the most substantial effect observed at 
Lag 0–30 (RR = 0.866, P < 0.001).

Table 5 outlines the associations between pollutants 
and respiratory mortality. The most pronounced effect 
is observed for SO2 during Lag 0–10, with an RR of 
1.096 (95% CI: 1.015, 1.184) and a P value of 0.019, 
suggesting a potential immediate impact of this pollutant 

on respiratory deaths. Other pollutants do not exhibit 
consistent or statistically significant effects across the 
different lag periods.

Table 6 indicates that PM2.5 (RR: 1.132, 95% CI: 
1.012, 1.267) and CO (RR: 0.927, 95% CI: 0.877, 0.981) 
significantly impact heart-related deaths, particularly in 
the short term (Lag 0–10). NO2 demonstrates statistical 
significance only in the long term (Lag 0–30), with an 
RR of 1.074 (95% CI: 1.006, 1.147), while PM10 exhibits 
borderline significance in the short term (Lag 0–10, RR: 
0.919, 95% CI: 0.852, 0.991) and mid-term (Lag 0–20, RR: 
0.903, 95% CI: 0.813, 1.002).

Discussion
The generalized additive model (GAM) has been widely 
employed to assess the relationship between air pollution 
and mortality, given its ability to handle both linear and 
non-linear relationships effectively. However, the use 
of GAM to investigate air pollution-related mortality in 
Iranian cities remains limited. Our analysis found that a 

Table 3. Pearson correlation coefficients between daily meteorological factors and air pollutants for Mashhad (2017–2020)

PM2.5 PM10 SO2 NO2 CO Temperature Relative humidity

PM2.5 1.000

PM10 0.980** 1.000

SO2 0.132** 0.118** 1.000

NO2 0.340** 0.302** 0.179** 1.000

CO −0.092** −0.051 0.195** 0.071* 1.000

Temperature 0.029 0.093** −0.387** −0.147** −0.080** 1.000

Relative humidity −0.127** −0.184** 0.072* −0.096** 0.075* −0.078** 1.000
**P < 0.01
* P < 0.05

Figure 1. Box plots of three air pollutants, two meteorological variables, and mortalities in four seasons
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10-unit increase in PM2.5 was associated with a significant 
rise in all-cause mortality across all lag periods, while PM10 
was linked to a decrease in mortality. The association of 
SO2 with all-cause mortality strengthened over time, 
becoming statistically significant, and CO consistently 
showed a negative correlation with mortality. NO2 had 
significant effects at shorter lags (0–10) but showed no 
statistical significance over extended lags (0–20, 0–30).

Regarding respiratory mortality, SO2 was the only 
pollutant with a statistically significant effect at Lag 
0–10, while other pollutants showed inconsistent or non-

significant results. For heart-related mortality, PM2.5 had 
a significant short-term impact, NO2 was significant over 
more extended periods, and PM10 showed borderline 
significance in the short and medium terms. 

These findings align with and contrast with studies 
both locally and globally. One study used a spatial 
heteroscedastic generalized additive distributed lag model 
and found significant short-term associations between 
PM2.5 exposure and cardiovascular hospitalizations, 
especially in the central and southeastern districts of the 
city, highlighting both temporal and spatial variability 

Figure 2. GAM base model performance

Table 4. Results of the adjusted generalized additive model about the 
effect of air pollutants on all-cause deaths (for a 1 unit increase in CO and 
a 10 unit increase in all other pollutants)

Pollutant RR 95% CI for RR P value

Lag 0–10 

PM2.5 1.086 (1.011, 1.166) 0.024*

PM10 0.946 (0.901, 0.99) 0.024*

SO2 1.028 (0.995, 1.061) 0.097

NO2 1.025 (1.003, 1.047) 0.027*

CO 0.931 (0.899, 0.96)  < 0.001*

Lag 0–20

PM2.5 1.136 (1.030, 1.253) 0.011*

PM10 0.921 (0.862, 0.985) 0.016*

SO2 1.043 (0.999, 1.089) 0.055

NO2 1.017 (0.987, 1.047) 0.277

CO 0.897 (0.859, 0.936)  < 0.001*

Lag 0–30

PM2.5 1.184 (1.038, 1.350) 0.012*

PM10 0.893 (0.817, 0.97) 0.014*

SO2 1.066 (1.008, 1.126) 0.024*

NO2 1.004 (0.966, 1.043) 0.842

CO 0.866 (0.823, 0.912)  < 0.001*

* P < 0.05

Table 5. Results of adjusted generalized additive model, about the effect 
of air pollutants on respiratory deaths (for a 1-unit increase in CO and a 
10-unit increase in all other pollutants)

Pollutant RR 95% CI for RR P value

Lag 0–10 

PM2.5 0.940 (0.780, 1.132) 0.514

PM10 1.025 (0.904, 1.162) 0.698

SO2 1.096 (1.015, 1.184) 0.019*

NO2 1.012 (0.958, 1.069) 0.666

CO 0.964 (0.882, 1.052) 0.414

Lag 0–20

PM2.5 1.039 (0.807, 1.337) 0.768

PM10 0.953 (0.803, 1.132) 0.585

SO2 1.103 (0.994, 1.225) 0.065

NO2 0.959 (0.889, 1.035) 0.284

CO 0.923 (0.829, 1.027) 0.140

Lag 0–30

PM2.5 1.076 (0.758, 1.529) 0.681

PM10 0.890 (0.700, 1.133) 0.346

SO2 1.120 (0.963, 1.300) 0.143

NO2 1.018 (0.913, 1.136) 0.747

CO 0.988 (0.844, 1.158) 0.886
* P < 0.05
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in risk (20). Another study identified PM2.5 as having 
the most significant health impact, increasing the risk of 
all-cause mortality by 1.5% per 10 μg/m³ (21). However, 
our findings on PM10 diverge from those that reported 
an increase in mortality associated with PM10 exposure, 
especially for older populations (22). Similarly, studies in 
Tehran indicated associations between NO2, PM10, and 
respiratory deaths, findings that partially align with our 
results, where NO2 showed significant effects in the short 
term but not over extended lags. More recent research 
further confirmed the high mortality rates attributed to 
PM2.5 pollution across Iranian cities, including Mashhad 
(23).

Internationally, various studies provide additional 
context. Research in Singapore found that increased air 
pollution, measured by PSI, was associated with all-cause 
mortality, although the effects were not always statistically 
significant (24). In Paris, wavelet analysis combined with 
GAM demonstrated non-linear time-dependent effects 
between air pollution and mortality, with distinct short- 
and medium-term patterns (25). In Mexico City, a study 
highlighted the importance of considering seasonality 
and temperature when assessing the effect of air pollution 
on cardiovascular and respiratory mortality (26). Similar 
to our findings, Kan et al found that short-term exposure 
to pollutants like PM10, SO2, and NO2 increased daily 
mortality in Shanghai (27).

Furthermore, studies in Canada demonstrated increased 
risks of respiratory mortality due to O3, NO2, and PM2.5 
exposure (1). In the Netherlands, trends in mortality 
associated with air pollution were assessed over different 
time periods, revealing upward trends in relative risk 
estimates, although these trends varied by cause of death 

(28). Research in Kathmandu Valley also highlighted the 
lag effect of PM10, showing a 2.57% increase in all-cause 
mortality for a 10 μg/m³ rise in concentrations, with 
effects persisting beyond 20 days (29).

The comparison between our findings and these studies 
underscores the complex and variable associations 
between air pollutants and mortality. The mixed evidence 
on the impact of NO2, as seen in our study and elsewhere, 
reflects the pollutant’s inconsistent effects over different 
time frames and populations. Importantly, our findings 
reinforce the significant role of PM2.5 in contributing to 
all-cause and heart-related mortality in both short- and 
long-term exposures.

Regarding socioeconomic status (SES), we acknowledge 
this as an important confounder. However, due to the 
unavailability of reliable daily SES data across the study 
period and at the city-wide level, we were unable to include 
it in the time-series analysis. We have now clarified this 
limitation and highlighted it as an area for improvement 
in future studies, where individual- or neighborhood-
level SES data may become accessible.

Despite the strength of our results, several limitations 
must be acknowledged. The use of environmental 
monitoring data introduces measurement errors, likely 
underestimating associations between air pollutants and 
mortality. The reliance on death certificates also carries 
the risk of misclassification, affecting the accuracy of 
mortality causes. Furthermore, separating the individual 
effects of specific pollutants remains challenging due to 
the complex nature of air pollution mixtures.

Conclusion
In conclusion, our study reveals a significant association 
between long-term exposure to PM2.5 and all-cause 
mortality in Mashhad from 2017 to 2020, with short-term 
effects also observed on cardiovascular mortality. These 
results emphasize the critical need for interventions to 
reduce PM2.5 concentrations, alongside continued health 
monitoring. Moreover, this research highlights the 
importance of addressing broader socioeconomic and 
environmental factors in future studies.
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