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Abstract

Background: Microplastics (MPs;<5 mm) and nanoplastics (NPs;<1 pm) are emerging pollutants
increasingly causing environmental and health concerns due to their widespread presence and
poor biodegradability. Humans are exposed to these particles through ingestion, inhalation, and
dermal contact.

Methods: This narrative review explores the impact of microplastics on human health by assessing
exposure pathways and organ-specific effects. Studies (2010-2024) from major databases were
synthesized by polymer type, exposure route, and observed outcomes across key body systems.
Results: Studies have reported that nylon microfibers impair respiratory health by releasing toxic
compounds that inhibit epithelial cell differentiation, disrupt tissue repair, and suppress Hoxa5
transcription factor expression. Evidence also indicates that MPs alter nasal and gut microbiota
composition, potentially contributing to respiratory, digestive, and immune disorders. Some studies
suggest that exposure to sources such as clothing dryers can modify airway protection gene expression.
Additionally, MPs disrupt cellular signaling pathways and have been observed to accumulate in male
reproductive tissues, including the prostate and semen, raising concerns about infertility and prostate
cancer risk.

Conclusion: Further research is urgently needed to clarify the long-term health effects of MPs,
particularly regarding gastrointestinal function and chronic disease. This review highlights that MPs
enter the human body through multiple pathways and exert detrimental effects on various organ
systems. Effective mitigation strategies and improved public awareness are essential to reduce exposure
and protect human and environmental health.
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Introduction

Every day, humans ingest, inhale, and encounter
microplastics (MPs), polymer particles smaller than 5 mm,
and nanoplastics (< 1 um), which have become ubiquitous
environmental pollutants (1,2). These particles, composed
of synthetic organic polymers such as polyethylene (high
and low density), polystyrene, polypropylene, polyvinyl
chloride, polyurethane, and polyethylene terephthalate,
exhibit variability in size, shape (e.g., spherical, fibrous, or
fragmentary), and chemical composition (3). Their small
size and persistent nature allow them to permeate various
environmental compartments, including air, water, and
soil, making their study critical for understanding their
implications for ecosystems and human health (2). The
absence of a formal lower size limit for MPs, typically
classified below 1 pm, underscores the complexity of

assessing their behavior and impact (2).

MPs originate from both primary and secondary
sources, contributing to their widespread environmental
distribution (4). Primary MPs are intentionally
manufactured for use in consumer products, such as
microbeads in cosmetics, facial scrubs, toothpastes, and
hygiene products (4). Secondary MPs form through the
degradation of larger plastics, such as plastic bags, bottles,
fishing nets, and car tires, via physical, chemical, and
biological processes, including weathering, UV radiation,
and microbial activity (4). Synthetic textiles, such as
polyester and nylon, release microfibers during washing,
significantly contributing to aquatic and atmospheric
pollution (5). Additionally, plastics often contain
additives like bisphenol A, phthalates, polybrominated
diphenyl ethers, and metals, which may act as carcinogens
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or endocrine disruptors, further complicating their
environmental and health impacts (6,7).

The ubiquitous presence of MPs raises profound
concerns for both human health and environmental
sustainability. Humans are exposed to MPs through
multiple pathways, including ingestion of contaminated
food (e.g., fish, shellfish, and vegetables), drinking water
(both bottled and tap), inhalation of airborne particles
in urban and industrial areas, and dermal contact via
cosmetics and textiles (8,9). These exposure routes
may induce adverse health effects, such as oxidative
stress, chronic inflammation, and disruption of gut
microbiota composition and metabolism, potentially
leading to respiratory, gastrointestinal, reproductive,
and immune system disorders (10,11). Environmentally,
MPs contaminate aquatic, terrestrial, and atmospheric
ecosystems, disrupting food chains and ecological
balance (8). For instance, MPs in marine environments
affect aquatic species, which in turn enter the human
food chain, amplifying exposure risks (9). The variability
in MP characteristics and their ability to transport
chemical pollutants, such as heavy metals and polycyclic
aromatic hydrocarbons, highlights the urgent need for
comprehensive research to elucidate their long-term
effects and develop effective mitigation strategies (12,13).

This narrative review comprehensively synthesizes
current knowledge on the effects of microplastics on
human health, with a particular focus on organ-specific
impacts. We also seek to identify existing knowledge
gaps and highlight future research priorities to inform
risk assessment and mitigation strategies. This review is
among the few to comprehensively synthesize evidence
on the organ-specific impact of microplastics on human
health, integrating findings from both experimental and
epidemiological studies. By focusing on affected organs,
this work provides a unique perspective that bridges
environmental exposure data with clinical implications,
offering guidance for future mechanistic research and
public health interventions.

Materials and Methods
This review investigates the effects of MPs on human
health, focusing on entry pathways and impacts on
various organs. The extracted data from selected studies
were analyzed using a narrative synthesis approach and
thematic grouping, and the findings were categorized based
on affected organ systems and exposure characteristics.
This narrative review was conducted following the
PRISMA guidelines, adapted for narrative synthesis to
ensure transparency and methodological rigor. A PRISMA
flow diagram is provided in Figure 1 to illustrate the
study selection process, including the number of studies
identified, screened, and included.

A literature search was conducted in reputable scientific
databases, including PubMed, Scopus, Web of Science,

Identification
Records identified from databases:
* PubMed

* Scopus

* Web of Science

}

Screening

Records after initial screening (title
& abstract):

|

Eligibility

Full-text articles assessed for
eligibility:

|

Included

Studies included in final review:

Figure 1. PRISMA flow diagram illustrating the literature search and
selection process for studies investigating the effects of microplastics on
human health

and Google Scholar, by applying the following keywords:
“microplastics,” “human health,” “exposure pathways,”
“ingestion,” “inhalation,” and “dermal contact” Boolean
operators (AND, OR, NOT) and temporal filters (2010-
2025) were applied for comprehensiveness. A total of 19
studies were included based on their direct investigation
of MP exposure and associated health outcomes in
human or mammalian models. Studies lacking clearly
defined outcome measures or exposure details were
excluded. The reference lists of key articles were manually
reviewed to identify additional studies. Inclusion criteria
encompassed original articles, reviews, and meta-
analyses in peer-reviewed journals addressing effects
on respiratory, gastrointestinal, reproductive, immune,
circulatory, dermal, and skeletal systems. Studies solely
on environmental effects or non-human studies without
human relevance were excluded. Titles and abstracts
were initially screened to eliminate irrelevant studies,
followed by full-text evaluation by two independent
researchers. Discrepancies were resolved by discussion
with a third researcher. Extracted data included author,
publication year, study type, MP type, exposure route,
reported effects, and proposed mechanisms, which were
qualitatively analyzed.

Results
To systematically evaluate the impact of microplastics

N
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(MPs) on human health, findings from 19 studies
published between 2016 and 2024 were synthesized. These
studies, conducted in diverse regions including China,
the Netherlands, Germany, Italy, and the United States,
reflect the global scope of this issue. Following PRISMA
guidelines, 19 studies were included from an initial pool
of 279 identified records (see Figure 1).

Analytical Methods for MP Detection

Advanced analytical techniques were employed to
detect MPs in human samples (e.g., blood, feces, semen,
skeletal tissues, and laboratory models. Yang et al utilized
pyrolysis-Gas ~ Chromatography-Mass  Spectrometry
(pyrolysis-GC-MS) to characterize MP compositions. The
detection limits (LOD) ranged from 0.10 pg/mL to 0.68
pg/mL. The limits of quantification (LOQ) for the same
method ranged from 0.33 ug/mL to 2.3 pg/mL (14,15).

Biological Effects of MPs

This evidence shows MPs enter the human body via
ingestion, inhalation, and dermal contact, contributing
to adverse health outcomes, inducing oxidative
stress (reported in 16 studies), inflammation (16
studies), and metabolic disorders (5 studies) (16). The
diversity of MP characteristics, including polymer
type (e.g., polystyrene, polyethylene, polypropylene,
and polytetrafluoroethylene), morphology (spherical,
fibrous, fragmentary, or mixed), and size (nanometers
to millimeters), influences biological interactions. For
instance, small spherical particles (e.g., polystyrene,
0.5-3 pm) are readily internalized by macrophages,
inducing cellular toxicity (17), while larger fibrous MPs
(e.g., polyester, 200-800 um) impair airway epithelial
cell differentiation, potentially exacerbating respiratory
conditions (5). MPs also act as vectors for chemical
pollutants, such as phthalates and polycyclic aromatic
hydrocarbons (PAHs), increasing risks of carcinogenicity
and endocrine disruption. These pollutants increase the
risks of carcinogenicity and hormonal disruption (18,19).
The global distribution of MP exposure, spanning urban
and rural settings in Asia, Europe, and North America
(20), underscores global exposure, highlighting the need
for coordinated international research.

Quality Control Measures

To ensure data reliability, most studies implemented
rigorous quality control measurements, including
vacuum filtration with polytetrafluoroethylene (PTFE)
membranes, procedural blanks to monitor background
contamination, and ethanol rinsing of glassware (21,22).
Advanced imaging and validated simulation models
further enhanced data accuracy (23). However, a subset of
studies, particularly those using laboratory or simulation-
based models, lacked detailed reporting of quality control
protocols, representing a limitation in methodological

transparency.

Research Gaps and Limitations

Data from 19 studies provide compelling evidence of MPs’
ubiquitous and detrimental effects, emphasizing the need
for further research into long-term exposure risks and
mitigation strategies. Key gaps include limited data on
vulnerable populations (e.g., pregnant women, the elderly,
and children) and the need to quantify chronic, low-dose
exposure risks. Standardized protocols for MP detection
are also required to enhance comparability across studies.
Table 1 summarizes key findings, including target organs,
MP types and morphologies, analytical methodologies,
and associated health effects.

Discussion
Table 1 in the results section summarizes the effects of
MPs on various organ systems, discussed below.

Respiratory System

MPs enter the respiratory system through inhalation of
polluted air, particularly in urban and industrial areas,
where concentrations are elevated. Particles smaller
than 5 pum penetrate deep into lung alveoli, inducing
oxidative stress and inflammation, which may contribute
to respiratory disorders, as evidenced by clinical reports
of MPs in lung tissue (36). For instance, Winkler et
al demonstrated that MP fibers from clothing dryers
suppress SCGB1A1 gene expression, compromising the
lung’s protective barrier and impairing airway repair (35).
Similarly, Nylon MP fibers release chemical compounds
that upregulate Hoxa5 transcription factor expression,
inhibiting airway epithelial cell differentiation and
reducing lung organoid formation in human and murine
models (24). These effects are particularly concerning for
vulnerable populations, such as children and individuals
with chronic lung diseases, who rely on robust epithelial
repair (24). Particle size, shape, and breathing significantly
influence deposition patterns; larger non-spherical
particles accumulate in the upper airways and bifurcations
at higher breathing rates (23). Furthermore, MPs alter
nasal microbiota composition, potentially exacerbating
respiratory and immune disorders (30).

Gastrointestinal System

Ingestion of MPs through contaminated food, particularly
seafood, and drinking water represents a primary
exposure route. During digestion, MPs release heavy
metals (e.g., chromium and lead), contributing to
toxic exposure (27). They cause structural damage to
the gastrointestinal tract, including villi cracking and
reduced mucus secretion, which weakens the intestinal
barrier. This damage induces systemic inflammation
by increasing inflammatory cytokine production and
recruiting immune cells, such as lymphocytes and mast

Environmental Health Engineering and Management Journal. 2026;13:1637 | 3



Beigrezaee et al

Table 1. Overview of selected studies on microplastic exposure and associated health effects

Author and year Country Target organ Polymer type Particle shape Particle size Analytical methods Main Effects DOI References
Skeletal tissues Polypropylene, ethylene Fragments, - . .
Yang et al, 2025 China (bone, cartilage, and vinyl acetate, polystyrene, fibers, 44.25 Raman micro spectroscopy qulammahon in skeletal t|s§ues, 10.1016/j.envint.2025.109316 (15)
) ; ; 39.407 uym disruption of bone metabolism
intervertebral disc) PTFE® microspheres
Netherlands, ) - . 31 um, 52 Hazardous for children and lung
Song et al, 2022 Germany, UK Lung (airway epithelium)  Nylon, polyester Not specified um Mass spectrometry disease patients 10.1164/rccm.202211-20990C (24)
Amato-Lourengo . . Polypropylene, polyamide, Fragments (75%), Presence in the olfactory bulb, 10.1001/
et al, 2024 Germany, Brazil - Brain olfactory bulb nylon fibers (25%) 5.5-4.26 um  pFTIR penetration into the nervous system jamanetworkopen.2024.40018 @1
Skin (cancerous and Fluorescence microscopy, Increased proliferation of skin
Wang et al, 2023 China Polyethylene Not specified 1 um appropriate controls, cancer cells, damage to normal 10.1016/j.ecoenv.2023.115636 (25)
normal cells) ) L
siRNA, inhibitors cells
Zhang et al, 2024 China Male reproduc?lve system Polystyrene, polypropylene, Fragn}entst 50-500 ym Raman micro- . Reduced sperm quality N 10.1016/j.ebiom.2024.105369 (26)
(semen and urine) PTFE spherical, fibers spectroscopy analysis (concentration, count, motility)
Godoy et al, ) Gastrointestinal system Crushed Presence in the gastrointestinal
2020 Spain (stomach and intestine) Polyethylene, polypropylene fragments <5mm ICP-mass system 10.3390/su12114792 (27)
Increased ROS production, DNA
Visalli et al, 2021 Italy Intestinal epithelial cells Polystyrene Spherical 3and 10 ym  Fluorescence microscope .dama.ge, and ldISI'U.ptIOFI of the 10.3390/ijerph18115833 (28)
intestinal barrier with prolonged
exposure
Brynzak- . . . )
) . Gastrointestinal system . o Presence in cancer cells and 10.1016/.
?(c):;‘r‘elber etal, Austria (colorectal cancer cells) Polystyrene Spherical 0.25-10 ym MTT® assay increased metastasis risk chemosphere.2024.141463 (29)
Zhang et al, 2022 China Nasal and gut microbiota  Polyethylene, PVC, PTFE  Not specified <5mm Infrared imaging 'r:Iit(?rI:;Iin:aOf nasal and gut 10.1097/MD.0000000000030215  (30)
Immune system Spherical (micro- Electron microscopy and Uptake by macrophages, increased
Adler et al, 2024  Germany y Polystyrene P 0.5-3 um —ectron | Py ar toxicity, necrosis, and NO 10.1016/.jhazmat.2024.134253  (17)
(macrophages) and nanobeads) live imaging for validation .
production
Leslie etal, 2022 Netherlands Bloodstream E;;'sg/‘:g:;hy'e”e’ Not specified >700 nm FTIR Presence in blood 10.1016/.envint.2022.107199  (14)
Lee et al, 2023 South Korea Breast cancer cells Polypropylene Fragments 4.16 pm SEM Effect on cancer cells 10.1038/s41598-023-33393-8 (31)
Deng etal, 2024 China Prostate (tumorous and - Polystyrene, polyethylene, -\ o ifieq Not specified LDIR and SEM Presence in the prostate and 10.1016/j.ebiom.2024.105360  (22)
para-tumorous tissue) PVC associated with breast cancer
) . . Polyethylene, polypropylene, e 0.125-0.15 . . . ) .
Hu et al, 2022 China Gastrointestinal system Not specified SEM, HPLC, and PBET PAHSs transfer in the intestine 10.1016/j.envint.2022.107459 (32)
and polystyrene mm
Shelkhetal.  gaigiArabia  Endocrine system Phthalates Notspecified  Not specified Molecular modeling Disruption of steroid homeostasis 4 1374 /5umal.pone.0151444 (1)
2016 and hormonal signaling
Pakistan Spherical, cubic,
Riaz et al, 2024 o Lung (airways) Not specified cylindrical, 1.6-56.5 ym  Tracheobronchial airways  Accumulation in lung bifurcations 10.1063/5.0205303 (13)
Australia, Taiwan
tetrahedral
Wau et al, 2023 China Testis Polystyrene Spherical 1um SEM Premature testicular aging 10.1186/s12989-023-00546-6 (33)
Wang et al, 2024 China Heart (cardiomyocytes) Not specified Not specified 1-100 nm Fluorescence microscope  Effect on cardiac cells 10.1186/s12951-024-02375-x (34)
Winkler et al, Italy Human airways Polyester Not specified 200-800 pm SI.EM and fluorescence Qene expression chapge_s and 10.1016/j.envint.2022.107200 (35)
2022 microscope airway organoid polarization

If any of the fields (e.g., polymer type, particle shape, size, or quality control) were not reported by the original studies, "Not specified" was entered in the table. a: Polytetrafluoroethylene; b: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium

bromide assay
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cells, potentially affecting organs like the brain, though
this requires further mechanistic validation (37). Fournier
et al found that repeated exposure to polyethylene MPs
promotes harmful bacteria and inflammatory metabolites,
such as skatole, which may impair gastrointestinal
health. However, their study reported no direct effects
on intestinal permeability or IL-8 cytokine production,
contrasting with other findings of increased permeability,
possibly due to differences in MP size or exposure
duration (37,38). This discrepancy underscores the need
for standardized experimental protocols. MPs also reduce
gut microbiota diversity, suppressing anti-inflammatory
bacteria, increasing intestinal permeability, and facilitating
bacterial toxin transfer to the bloodstream, potentially
contributing to conditions like inflammatory bowel
disease (37). The presence of plastic-degrading genes
in the gut microbiome suggests microbial adaptation
to MP pollution, a phenomenon warranting further
investigation (39). Additionally, MPs serve as vectors for
polycyclic aromatic hydrocarbons (PAHs), releasing up to
98% of these compounds in the intestine, resulting in a
high carcinogenic risk (incremental lifetime cancer risk,
ILCR>10"*) (32). Brynzak-Schreiber et al demonstrated
that polystyrene micro- and nanoplastics exhibit persistent
bioaccumulation in colorectal cancer cells, enhancing
cell migration and increasing the risk of metastasis,
highlighting the role of MPs in cancer progression (29).
While these studies provide robust evidence, many rely on
in vitro or animal models, which may not fully replicate
human exposure conditions, necessitating longitudinal
human studies.

Collectively, these findings position MPs as a
multifaceted threat to gastrointestinal health, contributing
to inflammation, microbiota dysbiosis, and elevated
cancer risk. These insights emphasize the need for policies
to reduce MP contamination in food and water, alongside
standardized methods to assess their long-term health
impacts (28).

Reproductive System

MPs have been shown to adversely affect reproductive
health, with emerging evidence highlighting their
presence in reproductive tissues and associated toxicities
(40). Codrington et al detected MPs, predominantly
polyethylene terephthalate (47.8%) and polypropylene
(34.7%), in human penile tissue and semen, suggesting
potential entry via the epididymis and seminal vesicles
(40,41). However, the cross-sectional design of this
study limits causal inferences, underscoring the need
for longitudinal research to confirm these findings.
Higher concentrations of MPs, including polystyrene,
polyethylene, and polyvinyl chloride, were observed in
tumorous prostate tissues compared to para-tumorous
tissues, with observational studies suggesting a correlation
with fast food consumption, potentially increasing

prostate cancer risk (22). Further mechanistic studies are
needed to validate this association.

Mechanisms of Reproductive Toxicity

Long-term exposure to polystyrene MPs activates the
Ca*/ROS/NF-xB signaling pathway, causing premature
testicular aging by impairing mitophagy and promoting
the accumulation of damaged mitochondria, which may
compromise male reproductive health (33). Additionally,
Polytetrafluoroethylene (PTFE) from non-stick cookware,
likely ingested through contaminated food, reduces sperm
count, motility, and quality, with greater MPs diversity
exacerbating these effects (26).

Immune System

MPs modify the physical and functional properties of
microorganisms, acting as vectors for pathogens and
impairing immune recognition and clearance (42).
They modulate innate immune responses by activating
macrophages, neutrophils, and the complement system
(42). For instance, Adler et al demonstrated that
polystyrene micro- and nanoplastics, when internalized
by human macrophages, induce necrosis and elevate
nitric oxide (NO) production, thereby impairing immune
homeostasis (17). MP exposure triggers inflammation,
damages the intestinal barrier, and alters the gut
microbiome, contributing to inflammatory bowel diseases
(43). These changes may increase the likelihood of
infection and inflammation (44). These disruptions may
exacerbate systemic inflammatory response, potentially
interacting with effects on other organ systems, such as
the gastrointestinal or circulatory system, as discussed
elsewhere in this review.

Circulatory System

The detection of MPs in the human blood has serious
implications (44). Sun et al showed polyamide and
polyurethane (20-100 um) transfer from maternal
blood to umbilical cord blood and fetal appendages,
raising concerns for maternal and fetal health (44). Lee
et al reported that MPs disrupt blood coagulation and
increase inflammatory markers, acting as a risk factor for
cardiovascular disorders (31). Polypropylene MPs induce
inflammation, histamine release, and ROS production,
exerting harmful effects on blood cells, especially
with prolonged or high-concentration exposure (45).
Polystyrene nanoplastics induce oxidative stress, DNA
damage, and cell division disruption, causing cytotoxic
and genotoxic effects on peripheral blood lymphocytes
(46). A significant correlation exists between plastic food
container use and elevated MP levels in blood (31).

Dermal and Skeletal Systems
The skin is a significant exposure route for MPs through
contact with textiles and airborne particles (47). Abbasi et
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al reported that men in the urban area of Iran experience
approximately twice the MP exposure compared to
women, likely due to occupational and environmental
factors (47). MPs containing flame-retardant additives,
such as polybrominated diphenyl ethers, are absorbed
through the skin, with up to 8% accumulation by mass
under sweating conditions, as measured by dermal
absorption assays (48). Furthermore, Wang et al
demonstrated that MPs induce oxidative stress and activate
the NLRP3 inflammatory pathway, leading to an increased
production of pro-inflammatory cytokines (e.g., IL-1p).
This process promotes skin cancer cell proliferation and
damages healthy epidermal cells, potentially acting as a
tumorigenic trigger (25).

Beyond dermal exposure, MPs infiltrate the skeletal
system via systemic circulation, accumulating in
intervertebral discs (25.44-407.39 pm) and potentially
disrupting skeletal health. These particles elevate
inflammatory markers and impair bone metabolism,
as evidenced by increased cytokine levels in affected
tissues (15).

Conclusion

Microplastics (MPs) pose a significant challenge to
human health and environmental sustainability due to
their pervasive presence and diverse biological effects.
Reviewed studies demonstrate that MPs induce oxidative
stress, chronic inflammation, and metabolic disorders
across multiple organ systems, including the respiratory,
gastrointestinal, ~reproductive, circulatory,
dermal, and skeletal systems. Specifically, fine MPs (<5
um) trigger inflammation in lung alveoli, with implications
for vulnerable populations such as children and those with
chronic lung diseases. In the gastrointestinal system, MPs
reduce gut microbiota diversity and weaken the intestinal
barrier, increasing systemic inflammation and elevating
cancer risk through mechanisms such as enhanced cell
migration. In the reproductive system, MPs, particularly
polystyrene, contribute to premature testicular aging
via the Ca*/ROS/NF-kB signaling pathway, impairing
mitophagy and reducing sperm quality. Immune
responses are disrupted by macrophage necrosis and
altered pathogen interactions, increasing susceptibility to
infections. Additionally, MPs in the blood are associated
with cardiovascular risks through inflammation and
disrupted coagulation, while dermal and skeletal systems
face inflammation and tumorigenesis risks via pathways
like NLRP3 activation.

While most studies report the adverse effects of MPs
on human health, several inconsistencies exist. For
example, some in vitro studies demonstrate significant
inflammatory responses at low concentrations, while
others observe no notable effects under similar exposure
levels. These discrepancies may stem from differences
in particle size and shape, polymer composition, or

immune,

experimental protocols. A major research gap remains in
understanding the effects of long-term, low-dose exposure
under realistic conditions. Moreover, emerging evidence
suggests that MPs may activate signaling pathways such as
Ca®*/ROS/NF-«B and induce mitochondrial dysfunction;
however, these mechanisms require further validation
in human models. Bridging these gaps through well-
designed in vivo and longitudinal studies is critical to
clarifying the dose-response relationships and biological
consequences of MP exposure.

Despite advances in detection methods, limitations
such as a lack of standardized protocols, limited data
on nanoplastics, and unknown toxicity mechanisms
complicate interpretation. Future research should develop
precise detection technologies, such as advanced imaging,
and conductlong-term cohortstudies to investigate chronic
effects on cancer, diabetes, and cardiovascular disorders.
Studying combined effects with other pollutants and
impacts on mental health and sleep is critical. Policy should
prioritize banning primary MPs in cosmetics, improving
plastic waste management, and promoting biodegradable
materials. Raising public awareness through education
and reducing single-use plastic consumption are key steps
in minimizing exposure. This study underscores the need
for collaboration among scientists, policymakers, and
industry to develop innovative solutions. MPs affect both
human health and ecosystem balance, making coordinated
efforts to reduce their production and release a scientific
and collective commitment to a sustainable future.
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