|
|
 |
Search published articles |
 |
|
Showing 21 results for Kinetic
Mahdi Farzadkia, Mohammad Hassan Ehrampoush, Ehsan Abouee Mehrizi, Shahram Sadeghi, Parvaneh Talebi, Akbar Salehi, Majid Kermani, Volume 2, Issue 1 (2-2015)
Abstract
Background: Investigating the performance of naturally operated treatment plants may be due to the fact that they cannot be operated as desired, or that they should be modified to achieve good performance e.g. for nutrients removal. The advantage of kinetic coefficient determination is that the model can be adjusted to fit data and then used for analyzing alternatives to improve the process. This study investigates the efficiency of subsurface artificial wetland and determines its kinetic coefficients for nutrient removal. Methods: The present study investigated the kinetics of biological reactions that occurred in subsurface wetland to remove wastewater nutrient. Samples were taken from 3 locations of wetlands for 6 months. The nutrient content was determined through measuring Total Kjehldahl Nitrogen (TKN), ammonium, nitrate, and phosphate values. Results: Average levels for TKN, ammonium, nitrate, and phosphate in effluent of control wetland were 41.15, 23.59, 1.735, and 6.43 mg/L, and in wetland with reeds were 28.91, 19.99, 1.49 and 5.63 mg/L, respectively. First-order, second-order, and Stover-Kincannon models were applied and analyzed using statistical parameters obtained from the models (Umax, KB). Conclusion: The nutrients removal at Yazd wastewater treatment plant was remarkable, and the presence of reeds in wetland beds was not very efficient in improving system performance. Other more efficient plants are suggested to be evaluated in the system. Stover-Kincannon kinetic model provided predictions having the closest relationship with actual data obtained from the field.
Abdolmajid Gholizadeh, Mitra Gholami, Reza Davoudi, Ayoob Rastegar, Mohammad Miri, Volume 2, Issue 3 (9-2015)
Abstract
Background: This study assessed the removal of organic material and nutrients from full-scale subsurface flow (SSF) constructed wetlands (CWs) followed by anaerobic stabilization ponds under environmental conditions. Methods: The effluents were distributed evenly in 12 reed beds. Samples were taken twice monthly for a total of 6 months from several points in the wetland. Biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), and nutrient removal from the system and the longitudinal effect of the reed beds for removal of pollutions were determined. A full-scale model of flow, BOD, and nutrients in SSF in the CWs is presented. Results: The flow rate and concentrations of parameters indicated that removal of organic matter and nutrients in the cold months decreased rather than in the hot months, as expected. The removal efficiency for BOD, COD, and TSS and the strongest biological interactions showed no uniform trends. The beds showed the highest removal rates in the first few meters of bed. The hybrid Monod-Plug flow regime and the Stover-Kincannon models showed the best fit for the kinetics of the processes. Umax in the Stover-Kincannon model was 3.64 mg/l.d for nitrogen and 0.24 mg/l.d for phosphorus. These values are very low, which indicates lower consumption and inefficiency of the system for removing nitrogen and phosphorus. Conclusion: It can be concluded that the SSF in CWs are able to treat average wastewater as effectively as common mechanical systems at lower cost.
Sakine Shekoohiyan, Gholamreza Moussavi, Samira Mojab, Ahmad Alahabadi, Volume 3, Issue 1 (3-2016)
Abstract
Background: The efficacy of NH4Cl-induced activated carbon (NAC) was examined in order to adsorb RR198, an azo reactive model dye, from an aqueous solution.
Methods: The effects of pH (3 to 10), adsorbent dose (0.1 to 1.2 g/L), dye concentration and contact time on the adsorption efficiency were investigated.
Results: The results showed that the removal of dye was highest at a solution pH of 7 and a powder dose of 1.1 g/L. The 85.9%, 72.6% and 65.4% removal of RR198 was obtained for a concentration of 25, 50 and 100 mg/L, respectively, at a relatively short contact time of 30 minutes, and at optimum pH and NAC concentrations of 1 g/L. The experimental data for kinetic analysis illustrated a best fit to the pseudo-second-order model. The study data on equilibrium were modeled using Langmuir, Freundlich and Dubinin–Radushkevich models; the Langmuir equation provided the best fit for the data.
Conclusion: Therefore, the NAC appears to be an efficient and appropriate adsorbent for the removal of reactive azo dyes from waste streams.
Selvaraj Suresh, Volume 3, Issue 3 (6-2016)
Abstract
Background: The presence of even a very small quantity of dye in water bodies is undesirable and affects the water bodies. Dye removal from industrial waste water is significant; hence in this study, a material that is an economical waste product was employed to test its acid dye removing capacity from aqueous solution.
Methods: In this study, batch mode experiments were performed in the sorption process of Acid Red 97 (AR 97), Acid Red 114 (AR 114) and Acid Red 151 (AR 151) onto Curcuma angustifolia scales (CS). Also, the effect of process parameters like pH and adsorbent dosage was studied. The experimental data of AR 97, AR 114 and AR 151 sorption was fitted to Langmuir, Freundlich and Temkin isotherm models. Kinetic results in AR 97, AR 114 and AR 151 sorption were fitted at various concentrations to pseudo-first order, pseudo-second order, Elovich and Intra-particle diffusion model.
Results: The monolayer sorption capacity of the acid dyes was found to be AR 97 (350.87 mg/g), AR 114 (202.42 mg/g) and AR 151 (168.91 mg/g). The Pseudo-second order model proved to be the best fit for the acid dyes. Boyd plot, confirms film diffusion in all acid dye sorption processes.
Conclusion: The results showed higher dye removal for acid dyes at pH 2. The isotherm data, demonstrated good sorption capacity with AR 97>AR 114>AR 151. Employing the CS material in this study proves to be a potential alternative to costlier adsorbents, utilized for the treatment of dye containing industrial waste water.
Soheil Sobhanardakani*, Raziyeh Zandipak, Lobat Taghavi, Volume 3, Issue 4 (10-2016)
Abstract
Background: The rapid increase in agricultural and industrial development has made heavy metal pollution a serious environmental problem and public health threat; therefore, removal of heavy metals from water is important. The current study prepared DNPH@SDS@Fe3O4 nanoparticles as a novel and effective adsorbent for removal of Hg(II) ions from an aqueous solution.
Methods: A selective adsorbent for Hg(II) was synthesized by coating Fe3O4 nanoparticles with sodium dodecyl sulfate which was further functionalized with 2,4-dinitrophenylhydrazine (2,4-DNPH). The synthesized nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), scanning electron microscopy (SEM) and SEM–EDXSt. The effects of pH, dose of adsorbent and shaking time on adsorption capacity were investigated. The kinetics and equilibrium of adsorption of the metal ions were thoroughly studied.
Results: SEM showed that the size of the nanoparticles was 20 to 35 nm. The maximum adsorption capacity for Hg(II) was 164.0 mg g-1 for an adsorbent dose of 0.04 g at pH 7.0, 25°C and the initial metal concentration was 25 mg L-1,which was greater than for most adsorbents previously examined for Hg(II) adsorption. Adsorption experimental data showed good correlation with the pseudo-second-order model and Langmuir isotherm model.
Conclusion: The results indicated that the DNPH@SDS@Fe3O4 nanoparticles are an efficient adsorbent for removal of heavy metal from wastewater.
Yusef Omidi Khaniabadi, Mohammad Javad Mohammadi, Mojtaba Shegerd, Shahram Sadeghi, Sedigheh Saeedi, Hassan Basiri, Volume 4, Issue 1 (3-2017)
Abstract
Background: Synthetic dyes have several harmful effects on human health as well as aquatic life. In this study, activated carbon (AV-AC), based on Aloe vera leaf shells, was used as a novel agricultural adsorbent, one that is low-cost and available for the removal of Congo red (CR) as a carcinogenic dye from aqueous solutions.
Methods: In the batch system, the influence of different parameters like contact time, pH, adsorbent dosage, and initial CR concentration were examined on the dye removal from liquid medium. The experimental data were fitted by pseudo-first-order and pseudo-second-order kinetics, and also Langmuir and Freundlich isotherms models.
Results: The optimum contact time and pH for the uptake of CR were obtained at 20 minutes and acidic pH of 2. The maximum uptake capacity of CR dye by AV-AC was 1850 mg/g. The results showed that the experimental data were well-fitted by the pseudo-second-order kinetic model (R2 > 0.99) and Freundlich isotherm model (R2 > 0.99).
Conclusion: According to the results of our study, the AV-AC is a low-cost, non-toxic, and effective adsorbent for the uptake of CR dye from aqueous media.
Zahra Heidari, Mohsen Motevasel, Nematollah Jaafarzadeh, Volume 4, Issue 4 (10-2017)
Abstract
Background: This research studied the effect of UV light on pentachlorophenol (PCP) removal in the electro-Fenton (EF) process.
Methods: PCP was used as the pollutant in this study. The effects of Fenton’s reagent, i.e. hydrogen peroxide concentration, solution pH, and treatment time by EF (EF) and photoelectro-Fenton (PEF) processes, were studied to determine rates of PCP removal. The results showed that a better performance and a high removal efficiency were achieved by coupling UV radiation and the EF process.
Results: EF processes required more time to remove PCP, while after a reaction time of 10 minutes, the PEF achieved a removal efficiency of 90.4%; this value is higher than the maximum efficiency of the EF process (83.44% after 40 minutes). The kinetic mechanisms of both processes were examined and
compared. The rate constants at optimum conditions were 0.0455 and 0.0579 min−1 for EF and PEF processes, respectively.
Conclusion: Removal efficiency was obtained in the order of PEF > EF.
Mohammad Malakootian, Marzie Javdan, Farnaz Iranmanesh, Volume 4, Issue 4 (10-2017)
Abstract
Background: Fluoride plays an important role in bone and dentin mineralization; however, excess fluoride intake is harmful to mankind.
Methods: This study evaluated the performance of bauxite from active Iranian mines in removing fluoride from drinking water. The effects of pH, contact time, adsorbent dose, and fluoride concentration on defluoridation and removal efficiency were determined. Kinetics and adsorption isotherms were studied. Fluoride levels were measured using SPADNS. Data analysis was performed using SPSS16.
Results: Bauxite from the Jajarm mine had the lowest adsorbency (20 g/L) and required the shortest contact time (90 minutes) to reach equilibrium compared with the ore from bauxite mines evaluated in another study which had greater efficiency rates in removing fluoride from drinking water (58.15%). The fluoride removal efficiency rates of the other bauxite mines were as follows: Mendon > Sadrabad > Khidabas > Khezri > Shahbalaghi > Tash > Biglar. Bauxite from Shomal-e Yazd, Hasanabad, and Shahid Nilchian mines could not achieve the required efficiency to remove fluoride from drinking water without initial preparation and modification. The removal efficiency rates of actual samples were much lower than the synthetic samples because of confounding factors.
Conclusion: As a result of the low cost and abundant availability of bauxite and the fact that its use does not require a particular expertise or sophisticated technology, the removal efficiency of this adsorbent can be increased to desirable levels through the use of corrective methods such as heating, acidifying, particle crushing, or the mixing of two or more removal systems.
Mahmoud Zarei, Nader Djafarzadeh, Leila Khadir, Volume 5, Issue 2 (5-2018)
Abstract
Background: Conserving water for human survival and providing future security are important issues that need to be addressed.
Methods: In this study, a zeolite modified with hexadecyl trimethyl ammonium bromide (HDTMA-Br), a cationic surfactant, and its application in removing direct blue 129 (DB129) was examined. Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) were used to characterize both modified and unmodified zeolites. The effects of operational parameters such as the amount of adsorbent, initial dye concentration and pH on the removal efficiency of the dye were examined.
Results: The results showed that in the initial dye concentration of 50 mg/L, the optimum amounts of adsorbent and pH were 0.3 g and 7, respectively. Increasing the dye concentration from 20 to 100 mg/L resulted in the reduction of the removal efficiency from 100% to 79% in the contact time of 90 minutes. The results indicated the highest attracting correlation with Langmuir model. The maximum adsorbent capacity obtained from Langmuir model was 25 mg/g. The kinetics of the dye adsorption on the modified zeolite followed pseudo-second-order kinetics model. Calculated thermodynamic parameters showed that Gibbs free energy changes (DGo) at temperatures of 20 and 45°C were -29.41 and -35.20 kJ/mol, respectively.
Enthalpy (DHo) and entropy changes were equal to 41.181 kJ/mol and 0.241 J/mol K, respectively. The results showed that the processing was a spontaneous endothermic reaction. The process modeled by artificial neural networks (ANN) showed that the experimental results can be accurately modeled using neural network model. The correlation coefficient found between the experimental and the model results was 0.951.
Conclusion: Due to the low cost, high abundance and availability of zeolite, the removal efficiency of this adsorbent can be increased to desirable levels by modifying.
Asadollah Karimi, Esmaeil Fatehifar, Reza Alizadeh, Hadi Soltani, Volume 5, Issue 4 (12-2018)
Abstract
Background: Spent caustic contains noxious components such as sulfide species and also high chemical oxygen demand content (COD). Oxidation of these materials to caustic and sulfate species is mostly the rate-controlling step within catalytic oxidation of spent caustic.
Methods: In this study, the kinetics of catalytic oxidation of spent caustic and the regeneration methodology of the sulfidic spent caustic were investigated. The kinetics of catalytic oxidation of spent caustic was studied in the presence of a heterogeneous catalyst. The developed mathematical model was verified via the batch bubble column reactor. The elementary and non-elementary models based on the genetic algorithm were
used to obtain the rate coefficient and kinetic order.
Results: The experiments were carried out at various conditions. The results indicated that the error of objective function of the non-elementary and elementary models was 3.01% and 134.96%, respectively.
Conclusion: According to the results, the non-elementary model had rational outcome compared to the elementary one. Also, non-elemental model is more concordance with experimental results.
Dariush Naghipour, Abdoliman Amouei, Kamran Taher Ghasemi, Kamran Taghavi, Volume 6, Issue 2 (5-2019)
Abstract
Background: Metoprolol (MTP) with its low biodegradability is one of the most dominant micropollutant in the effluent of wastewater treatment plants. The aim of this study was to investigate the removal of metoprolol from aqueous solutions by the activated carbon prepared from pine cones.
Methods: The pine cones were activated using thermal activation method. Characteristics of the adsorbent were determined using Brunauer-Emmett-Teller (BET) and scanning electron microscopy (SEM). In this study, the influent of different parameters such as pH, contact time, initial concentrations of metoprolol, adsorbent dose, temperature, adsorption isotherms, and kinetics were investigated.
Results: The maximum removal efficiency of MTP (89.2%) was obtained at pH=8.5, adsorbent dose=1.5 g, contact time=60 min, and initial concentration=50 mg/L. By increasing the adsorbent dose, the removal efficiency also increased, but the adsorption capacity decreased, however, by increasing the initial concentration, the removal efficiency decreased, but the adsorption capacity increased. The isotherm experimental data for metoprolol was best fitted using the Langmuir model, and kinetic data were better described by pseudo-second-order kinetic model. The thermodynamic study indicated that the adsorption of MTP by the adsorbent was feasible, spontaneous, and endothermic.
Conclusion: MTP removal by the activated carbon prepared from pine cones showed that this natural adsorbent is appropriate for removal of metoprolol from aqueous solutions regarding cost, efficiency, and production method.
Amirreza Talaiekhozani, Abbas Heydari Chaleshtori, Farhad Banisharif, Zeinab Eskandari, Mohammad Nasiri, Farham Aminsharei, Junboum Park, Shahabaldin Rezania, Maryam Bazrafshan, Volume 6, Issue 3 (8-2019)
Abstract
Background: Industrial dyes are toxic and carcinogenic, therefore, they should be removed from wastewater. The aim of this study was to investigate the removal of acid orange 7 Dye from wastewater using ultraviolet (UV) radiation, MgO nanoparticles, ultrasonic method alone and in combination with each other.
Methods: The effects of some factors such as temperature, pH, hydraulic retention time (HRT), UV power, and concentration of MgO nanoparticles on the removal of Acid Orange 7 dye from synthetic wastewater using different methods were investigated. Also, adsorption isotherms for MgO nanoparticles and kinetics for UV radiation were investigated.
Results: The optimum HRT was 55 minutes while the temperature was not effective in dye removal using the ultrasonic method. Under optimum conditions for UV irradiation method (HRT = 70 minutes, UV power = 170 mW/cm2, and temperature = 10˚C), 58% of the dye was removed. However, under optimum conditions for MgO nanoparticles method (HRT = 15 minutes, temperature = 20˚C, and ratio of MgO nanoparticles to the initial dye concentration = 67.2), 82% of the dye was removed. By combining these methods, the dye removal efficiency was significantly increased. The combination of ultrasonic method and MgO nanoparticles had no significant effect on increasing the dye removal efficiency from wastewater. It was revealed that dye removal using UV radiation can be described by the first-order kinetics.
Conclusion: According to the results, UV radiation has a synergistic effect on the dye adsorption process by MgO nanoparticles. Therefore, the combination of these methods can be effective for the removal of dye from wastewater.
Marzieh Bagheri, Esmail Mardani, Volume 6, Issue 3 (8-2019)
Abstract
Background: Today, due to increasing usage of dyes in various industrials and their destructive effects on health and environment, it is necessary to remove them from industrial wastes. Although there are few studies on the use of rice bran modified with polyaniline (RB/PANI) for removal of different dyes, but the effect of this adsorbent on the removal of Acid Orange 7 (AO7) dye has not been evaluated yet. Therefore, this study was conducted to investigate the removal of AO7 dye by RB/PANI as an adsorbent.
Methods: The adsorbent characteristics were determined using scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Also, the adsorbent surface area was measured by Brunauer–Emmett–Teller (BET) technique. The method of one-factor-at-a-time was used to optimize various factors including pH, temperature, and adsorbent dosage.
Results: The optimal values for the factors affecting AO7 dye removal were calculated. It was revealed that the maximum dye removal was obtained at pH = 3, temperature = 25˚C, dye concentration = 30 mg/L, adsorbent dosage = 30 mg/L, and contact time= 60 minutes. The maximum removal percentage for RB/PANI was 97.13%. It was also revealed that Langmuir isotherm is the best fitted isotherm model.
Conclusion: According to the results, the polyaniline-modified rice bran could be used as an excellent adsorbent for the removal of AO7 from aqueous solutions. The maximum dye removal efficiency for AO7 was obtained at pH = 3. Also, it was revealed that AO7 dye removal follows the pseudo second order kinetic model and it is a spontaneous process.
Mina Ghahrchi, Edris Bazrafshan, Behruz Adamiyat Badan, Yousef Dadban Shahamat, Fariba Gohari, Volume 7, Issue 2 (5-2020)
Abstract
Background: The discharge of untreated wastewater containing toxic and resistant compounds into the environment is a serious threat for ecosystems. Therefore, this study was conducted to evaluate the treatment of poison production factory wastewater using heterogeneous catalytic ozonation process
(COP).
Methods: Magnetic carbon nanocomposite was used as a catalyst at concentrations of 1, 2, and 4 g/L. Its effect on improving the treatment process was evaluated at reaction time of 30, 60, 90, and 120 minutes. At the end of each experiment, parameters including total organic carbon (TOC), chemical oxygen demand (COD), biological oxygen demand (BOD5), pH, electrical conductivity (EC), and turbidity were measured.
Results: It was revealed that in single ozonation process (SOP), the maximum removal efficiencies of TOC, COD, and BOD5 were achieved at reaction time of 120 minutes as 56%, 40%, and 11.7%, respectively. By adding the catalyst to the wastewater, the treatment process was improved, so that the
maximum removal efficiencies of COD (91%), TOC (73%), and BOD5 (74%) were obtained at catalyst concentration of 4 g/L. Under this condition, BOD5/COD ratio increased from 0.22 to 0.64. Also, the results of analysis of ozone consumption per each mg of reduced COD showed that its amount sharply decreased from 2.1 mgO3/mg COD removal in the SOP, to 0.34 mgO3/mg COD removal in the COP. The results of kinetic reaction analysis also revealed that the rate constant increased from 0.007 to 0.02 min-1.
Conclusion: According to the results, it can be concluded that the COP at a catalyst concentration of 4 g/L, by decomposing resistant compounds and increasing the biodegradability, can be used as a suitable pre-treatment method for biological processes.
Behzad Jamshidi, Yaser Tahmasebi Birgani, Sahand Jorfi, Afshin Takdastan, Mahboobeh Dehvari, Behnam Jamshidi, Volume 7, Issue 4 (10-2020)
Abstract
Background: Natural organic matters such as humic acid react with chlorine and produce disinfection by products such as trihalomethanes that are carcinogenic. In this study, shellfish ash was used as a novel adsorbent for removal of humic acid.
Methods: The present study was performed under various laboratory conditions including pH, adsorbent dose, contact time, and initial concentration of humic acid. Residual concentrations of humic acid in the samples were determined by a UV-Vis spectrophotometer at 254 nm wavelength. Artificial neural network (ANN) modeling studies were also performed.
Results: Elemental analysis showed that the shellfish ash was 98% pure calcium. It was indicated that the maximum adsorption capacity was achieved in acidic conditions (pH = 3) and pHzpc was found to be 10.3. The adsorption data followed the Langmuir model (R2 > 0.9). The adsorption of humic acid followed the pseudo-second-order kinetic (R2 = 0.999). ANN modeling also provided the accurate prediction of humic acid adsorption for testing data (R2 = 0.989).
Conclusion: According to the results, shellfish ash is recommended as an effective biosorbent for removal of organic pollutants such as humic acid.
Alaa Mohamad Soubh, Mohammad Ali Abdoli, Lorin Ali Ahmad, Volume 8, Issue 1 (1-2021)
Abstract
Background: To remove methylene blue (MB) from aqueous solutions, nanoscale zero-valent iron (nZVI) predicated on reduced expanded graphene oxide (rEGO) was used as the activator of persulfate.
Methods: Scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) analyses were used to investigate the surface morphology and to examine the surface elemental composition. X-ray diffraction (XRD) was used to determine the chemical compositions of the synthesized compound. In this study, the effects of pH (3-9), activator dose (0.4-1.6 g L-1), persulfate concentration (0.192-0.768 g L-1), and reaction time (0-60 minutes) on the removal of 10 mg L-1 MB were studied by nZVI -reduced expanded graphene oxide/persulfate (nZVI@rEGO/PS) process.
Results: The maximum removal efficiencies of MB at optimum operational conditions (pH 3, activator dose = 1.2 g L-1, persulfate concentration = 0.576 g L-1, and reaction time = 20 minutes) by nZVI@rEGO/PS process was 96%. The chemical method was used to prepare expanded graphene. The volume of natural flake graphite increased about 25 times after the process. SEM image of the nZVI@rEGO showed the presence of nZVI placed on the EGO surface in chain structure with a diameter about 100 nm. The EDS analysis of the activator indicated the existence of Fe element to an amount greater than 50%.
Conclusion: According to the results, nZVI@rEGO is considered as a promising activator of persulfate.
Hajar Aghili Dehnavi, Mohammad Mahdi Amin, Ali Fatehizadeh, Hossein Movahedian Attar, Karim Ebrahimpour, Bijan Bina, Volume 8, Issue 3 (8-2021)
Abstract
Background: The present study aimed to assess the acute impact of erythromycin (ERY) as an inhibitor on peptone mixture utilization of activated sludge (AS) consortium.
Methods: For this purpose, the inhibition of oxygen consumption was used based on the ISO 8192:2007 procedure. In this method, the AS consortium (10-day age) was extracted from labscale membrane bioreactor, then, percentage inhibition for total, heterotrophic, and nitrifying microorganisms, in separate batch respirometric tests were calculated in the absence and presence of N-allylthiourea (ATU) as a specifc Nitrifcation inhibitor.
Results: The obtained data showed that the height of oxygen uptake rate (OUR) profles and amount of oxygen consumption reduced with increasing ERY dose. The half-maximal effective concentration (EC 50) of ERY for heterotrophic and nitrifer microorganisms were 269.4 and 1243.1 mg/L, respectively. In Run 1, the kinetic coeffcients bH, fA,H, YH, and µH were calculated as 2.61 d-1, 0.44, 0.4945 mg VSS/mg COD, and 0.047 d-1, respectively. Also, for maximum ERY concentration (1000 mg/L), the kinetic coeffcients bH., fA,H, YH, and µH were calculated as 2.27 d-1, 0.3, 0.4983 mg VSS/mg COD, and 0.0049 d-1, respectively.
Conclusion: The fndings showed that the inhibitory impact of ERY was observed as a decrease in the amount of oxygen consumption by OUR profles in rapid respirometric method (ISO 8192), which offered a novel insight for the acute inhibitory impact of this antibiotic. Also, chemical oxygen demand (COD) as an overall substrate parameter is most helpful in interpreting the behavior and the metabolic functions of AS systems.
Seyyed Abbas Mirzaee, Neemat Jaafarzadeh, Susana Silva Martinez, Zahra Noorimotlagh, Volume 9, Issue 1 (1-2022)
Abstract
Background: Nanocomposites have received remarkable attention as effective adsorbents for removal of coexisting pollutants over the last decades. The presence of heavy metals (HMs) in wastewater has caused a global health concern. Therefore, the aim of this study was to review the most relevant publications reporting the use of nanostructures to simultaneous adsorption of HMs in mixed aqueous systems.
Methods: In this systematic review, 9 studies were included through a systematic search in the three databases (ISI, Scopus, and PubMed) during 1990-2021. The optimal value of simultaneous adsorption parameters such as initial concentration, contact time, adsorbent dosage, and pH was discussed.
Results: Findings indicate that the Langmuir and Freundlich models and the pseudo-second-order kinetic model have been widely used and the most popular models to describe the equilibrium of HMs by nanoadsorbents. This study confirmed that the simultaneous removal rate of HMs decreased with an increase in pH value. It was found that the major mechanisms of HMs adsorption onto nanostructures were electrostatic interactions and precipitation.
Conclusion: Nanocomposites have remarkable adsorption performance for HMs with the highest adsorption capacity (qe(mg/g)).
Bijan Bina, Nasim Nikzad, Soudabeh Ghodsi, Seyed Alireza Momeni, Hossein Movahedian Attar, Mahsa Janati, Farzaneh Mohammadi, Volume 9, Issue 4 (10-2022)
Abstract
Background: Treatment of combined industrial wastewater from industrial parks is one of the most complex and difficult wastewater treatment processes. Also, the accuracy of biological models for the prediction of the performance of these processes has not been sufficiently evaluated. Therefore, in this study, the International Association on Water Quality (IAWQ(-Activated Sludge Model No. 1 (ASM1) was implemented for the Jey industrial park in Isfahan province, Iran.
Methods: The Jey IPWWTP process is a combination of anaerobic and aerobic biological processes. To evaluate the overall performance of IPWWTP, organic compounds, suspended solids, nutrients, attached biomass, and some operating parameters were measured during 6 months. Then, the biokinetic coefficients of aerobic processes were determined using Monod equations. Finally, the aerobic processes were modeled using ASM1 implemented in STOAT software.
Results: The values of the biokinetic coefficients K, Y, Ks, Kd, and µmax were calculated as 2.7d-, 0.34 mg VSS/mg COD, 133.36 mg/L COD, 0.03d-, and 0.93d-, respectively. Based on the default coefficients and conditions of the ASM model, the difference between the experiments and model prediction was about 2 to 98%. After calibrating the ASM model, the difference between the experiments and prediction in all parameters was reduced to less than 10%.
Conclusion: Investigations showed that the default coefficients and operation conditions of the ASM1 model do not have good predictability for complex industrial wastewaters and the outputs show a low accuracy compared to the experiments. After calibrating the kinetic coefficients and operating conditions, the model performance is acceptable and the predictions show a good agreement with the experiments.
Milad Pourjaafar, Ali Askari, Ali Salehi Sahl Abadi, Bagher Anvaripour, Afshar Nemati, Seyed Ali Rahimi, Mona Pourjafar, Volume 10, Issue 2 (3-2023)
Abstract
Background: Heavy metal pollution has become one of the most severe environmental problems, therefore, the present study was conducted to investigate removal of cadmium (Cd) from aqueous solution.
Methods: In the present study, nano Prosopis cineraria leaf ash (NPCLA) was used as an adsorbent for removing Cd from aqueous solution. Contact time, initial pH of the solutions, sorbent dosages, and initial Cd (II) concentration were considered as parameters affecting Cd removal efficiency. The experiments were designed by Design of Expert (DOE) software.
Results: It was revealed that an NPCLA dosage of 2.45 gL-1, pH of 6.3, and initial Cd (II) concentration of 20.7 mgL-1 in contact time of 60 min was the optimum condition for removal of Cd (II) in the domain of experiments and at this optimum condition, the prediction value of removal efficiency was found 99.9%. Based on the results of kinetics experiments, the sorption system and experiment data of Cd (II) adsorption on the NPCLA followed the pseudo-second-order kinetic model. Freundlich, Langmuir, Brunauer-Emmett-Teller (BET), and Temkin isotherm models were investigated. The equilibrium adsorption data were fitted well with linearly transformed Langmuir isotherm with a correlation coefficient of R2 = 0.9877, and the maximum sorption capacity of NPCLA was obtained to be 25.25 mgg-1.
Conclusion: In laboratory conditions, NPCLA can remove Cd from aqueous solution with a high efficiency. Therefore, due to this plant’s availability and cheapness, NPCLA can be considered a suitable option for producing adsorbents on industrial scales.
|
|