[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Open Access
AWT IMAGE
..
MeSH Browser

AWT IMAGE

..
Scopus quartile
..
Google Scholar

Citation Indices from GS

AllSince 2020
Citations36993057
h-index2725
i10-index127102

..
ORCID
..
EBSCO
..
:: Search published articles ::
Showing 1 results for Neural Networks (computer)

Meysam Alizamir, Soheil Sobhanardakani,
Volume 4, Issue 4 (10-2017)
Abstract

Background: The effects of trace elements on human health and the environment gives importance to the analysis of heavy metals contamination in environmental samples and, more particularly, human food sources. Therefore, the current study aimed to predict arsenic and heavy metals (Cu, Pb, and Zn) contamination in the groundwater resources of Ghahavand Plain based on an artificial neural network(ANN) optimized by imperialist competitive algorithm (ICA).
Methods: This study presents a new method for predicting heavy metal concentrations in the groundwater resources of Ghahavand plain based on ANN and ICA. The developed approaches were trained using 75% of the data to obtain the optimum coefficients and then tested using 25% of the data. Two statistical indicators, the coefficient of determination (R2) and the root-mean-square error (RMSE), were employed to evaluate model performance. A comparison of the performances of the ICA-ANN and ANN models revealed the superiority of the new model. Results of this study demonstrate that heavy
metal concentrations can be reliably predicted by applying the new approach.
Results: Results from different statistical indicators during the training and validation periods indicate that the best performance can be obtained with the ANN-ICA model.
Conclusion: This method can be employed effectively to predict heavy metal concentrations in the groundwater resources of Ghahavand plain.


Page 1 from 1     

Environmental Health Engineering And Management Journal Environmental Health Engineering And Management Journal
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4713