[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 7, Issue 4 ( Autumn 2020) ::
Environ. health eng. manag. 2020, 7(4): 277-285 Back to browse issues page
A new approach for designing a hypolimnetic oxygenation system to improve the water quality in tropical reservoirs
Mashallah Moridi , Neamatollah Jaafarzadeh Haghighi Fard , Abdolrahim Pazira , Fazel Amiri , Esmaeil Kouhgardi
Corresponding author:Department of Environmental Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran , abpazira@gmail.com
Abstract:   (915 Views)
Background: One of the most important problems of dams is thermal layering which directly affects the water quality. This study was performed to propose a solution to increase the water quality of the Esteghlal Dam reservoir in Minab, Hormozgan.
Methods: The water quality of Esteghlal Dam was evaluated from 2016 to 2018. During this period, 18 samples were collected from three different points of the dam. The parameters of water temperature, electrical conductivity, total dissolved solids, total suspended solids, dissolved oxygen (DO), pH, nitrate, phosphate, turbidity, biochemical oxygen demand, chemical oxygen demand, total hardness, anions and cations, total phosphorus, physicochemical, and microbial parameters were measured according to the method recommended in the standard method book. The obtained data were used as the input for the model of reservoir water quality (CE-QUAL-W2) to simulate reservoir water quality and predict the thermocline cycle. Finally, by plotting hypolimnion oxygen content against time and finding the slope of regression line using the data, the hypolimnetic oxygen demand (HOD) was obtained.
Results: The findings showed that the anaerobic condition occurred in the hypolimnion layer during summer. Furthermore, it was revealed that the HOD of Esteghlal Dam is about 6 g of oxygen per square meter per day in the current situation.
Conclusion: Considering the dam’s conditions and its anaerobic problems, a hypolimnetic oxygenation system is proposed as a structural solution for this reservoir. Then, conductivity-temperature-depth (CTD) profiles and monitoring data were used for the oxygen supply model of plume. The reservoir was predicted after calculating the amount of oxygen required using the equations governing linear oxygen supply systems and the plume model.
Keywords: Anaerobiosis, Oxygen consumption, Water quality, Phosphorus, Ammonia
eprint link: http://eprints.kmu.ac.ir/id/eprint/35104
Full-Text [PDF 1311 kb]   (618 Downloads)    
Type of Study: Original Article | Subject: General
Received: 2021/01/1 | Accepted: 2020/10/31 | Published: 2021/01/1
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moridi M, Jaafarzadeh Haghighi Fard N, Pazira A, Amiri F, Kouhgardi E. A new approach for designing a hypolimnetic oxygenation system to improve the water quality in tropical reservoirs. Environ. health eng. manag.. 2020; 7 (4) :277-285
URL: http://ehemj.com/article-1-686-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 7, Issue 4 ( Autumn 2020) Back to browse issues page
مجله مدیریت و مهندسی بهداشت محیط Environmental Health Engineering And Management Journal
Persian site map - English site map - Created in 0.03 seconds with 30 queries by YEKTAWEB 4353