|
|
 |
Search published articles |
 |
|
Showing 4 results for Fatehifar
Mohammad Shakerkhatibi, Nahideh Mohammadi, Khaled Zoroufchi Benis, Alireza Behrooz Sarand, Esmaeil Fatehifar, Ahmad Asl Hashemi, Volume 2, Issue 3 (Summer, 2015)
Abstract
Background: Forecasting of air pollutants has become a popular topic of environmental research today. For this purpose, the artificial neural network (AAN) technique is widely used as a reliable method for forecasting air pollutants in urban areas. On the other hand, the evolutionary polynomial regression (EPR) model has recently been used as a forecasting tool in some environmental issues. In this research, we compared the ability of these models to forecast carbon monoxide (CO) concentrations in the urban area of Tabriz city. Methods: The dataset of CO concentrations measured at the fixed stations operated by the East Azerbaijan Environmental Office along with meteorological data obtained from the East Azerbaijan Meteorological Bureau from March 2007 to March 2013, were used as input for the ANN and EPR models. Results: Based on the results, the performance of ANN is more reliable in comparison with EPR. Using the ANN model, the correlation coefficient values at all monitoring stations were calculated above 0.85. Conversely, the R2 values for these stations were obtained <0.41 using the EPR model. Conclusion: The EPR model could not overcome the nonlinearities of input data. However, the ANN model displayed more accurate results compared to the EPR. Hence, the ANN models are robust tools for predicting air pollutant concentrations.
Javad Ahmadi, Davood Kahforoushan, Esmaeil Fatehifar, Khaled Zoroufchi Benis, Manouchehr Nadjafi, Volume 3, Issue 1 ( Winter 2016)
Abstract
Background: Urmia Lake, the second largest hyper-saline lake of the world, has experienced lack of water and other environmental issues in recent years. Now, there is a danger of the lake drying out, which will affect the region and its inhabitants. This study aimed to present a model which can relate the water level of the lake to effective factors.
Methods: Parameters that influence water level, such as precipitation, evaporation, water behind dams, and the previous year’s water level, were considered in the modeling procedure. The proposed model, based on evolutionary polynomial regression, can be used to evaluate salt marshes produced in the region in recent years.
Results: Results show that the high surface-area-to-depth ratio of Urmia Lake is most influential on its drying; however, omitting this characteristic as an inherent one, the main cause is the construction of dams on rivers in the Urmia Lake basin.
Conclusion: The proposed model predicts that by 2015, the water level of Urmia Lake will fall below 1269 m, and by 2030, the lake will dry out completely.
Asadollah Karimi, Esmaeil Fatehifar, Reza Alizadeh, Iraj Ahadzadeh, Volume 3, Issue 4 ( Autumn, 2016)
Abstract
Background: Sulfur compounds must be removed from petroleum because they contribute to environmental pollution. A strong alkaline solution such as caustic soda is used to remove these compounds. This spent caustic has high values for chemical oxygen demand (COD) concentration, pH and total sulfur. In this study, the regeneration and treatment methodology of sulfidic spent caustic was investigated by applying the analytic hierarchy process (AHP).
Methods: The evaluation index system developed was based on group decision-improved AHP. Expert Choice software was used to simplify decision-making when choosing a practical method and prioritizing treatment of spent caustic. Cost, environmental considerations, availability and scale-up were chosen as criteria and wet air oxidation and biological and catalytic methods were selected as alternative methods. The treatment and regeneration of spent caustic was carried out in a batch bubble column reactor loaded with IVKAZ catalyst and the effluent was treated in a precipitation-stirred tank reactor.
Results: Evaluation indicated that cost ranked first among criteria at 40.9%. The results showed that the proposed process produced about 13% (wt) of caustic, 50 g/L of COD and 36 g/L of S2-.
Conclusion: The results indicate that the catalytic method was more effective (0.45) than wet air oxidation and the biological method. This process regenerated more than 85% of initial caustic and the economy of the process improved by the recycling of the stream of caustic.
Asadollah Karimi, Esmaeil Fatehifar, Reza Alizadeh, Hadi Soltani, Volume 5, Issue 4 ( Autumn 2018)
Abstract
Background: Spent caustic contains noxious components such as sulfide species and also high chemical oxygen demand content (COD). Oxidation of these materials to caustic and sulfate species is mostly the rate-controlling step within catalytic oxidation of spent caustic.
Methods: In this study, the kinetics of catalytic oxidation of spent caustic and the regeneration methodology of the sulfidic spent caustic were investigated. The kinetics of catalytic oxidation of spent caustic was studied in the presence of a heterogeneous catalyst. The developed mathematical model was verified via the batch bubble column reactor. The elementary and non-elementary models based on the genetic algorithm were
used to obtain the rate coefficient and kinetic order.
Results: The experiments were carried out at various conditions. The results indicated that the error of objective function of the non-elementary and elementary models was 3.01% and 134.96%, respectively.
Conclusion: According to the results, the non-elementary model had rational outcome compared to the elementary one. Also, non-elemental model is more concordance with experimental results.
|
|