[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Open Access
AWT IMAGE
..
MeSH Browser

AWT IMAGE

..
Scopus quartile
..
Google Scholar

Citation Indices from GS

AllSince 2020
Citations36332992
h-index2724
i10-index127101

..
ORCID
..
EBSCO
..
:: Search published articles ::
Showing 1 results for 16srrna

Shiva Hosseini, Davood Azadi, Abdorrahim Absalan,
Volume 9, Issue 2 (3-2022)
Abstract

Background: Polycyclic aromatic hydrocarbons (PAHs) have detrimental effects on human, ecosystem, and biodiversity. Bioremediation is an option that has been used to remediate and reduce the risk of contaminants such as PAHs. Microorganisms are readily available to screen and can be rapidly identified to be used in many extreme environmental conditions. Mycobacteria have a great potential for the production of bioactive compound, which have degradation activity. Due to this issue, and also, as there is no study conducted on the biodiversity of biodegradable Mycobacterium in Markazi province, the present study aimed to assess the isolation and identification of biodegradable Mycobacterium species from diverse Markazi province ecosystems.
Methods: Mycobacterium were screened from a total of 30 soil, water, and sludge samples from the oilpolluted ecosystems of Markazi province and characterized to the genus and species level by applying molecular and conventional microbiological assay including the PCR amplification and sequence
analysis of 16SrRNA and hsp65 genes. The growth rate in the presence of PAHs, turbidometry, and high performance liquid chromatography (HPLC) were used to determine their bioremediation capability.
Results: In total, 6 Mycobacterium isolates (20%) were screened from 30 samples, which belonged to two species of Mycobacterium consisting of M. porcinum (4 isolates) and M. celeriflavum (2 isolates). The strains of M. porcinum and M. celeriflavum could degrade 70% and 90% of 1 mg/L PAH solution in 7 days.
Conclusion: According to the results, the M. porcinum and M. celeriflavum have a significant capability to biodegrade the PAHs. Therefore, more investigations are recommended for separation and applicational use of the mycobacterium species for bioremediation of PAHs.


Page 1 from 1     

Environmental Health Engineering And Management Journal Environmental Health Engineering And Management Journal
Persian site map - English site map - Created in 0.06 seconds with 37 queries by YEKTAWEB 4710